
Calculus

Nipun Batra

August 28, 2023

IIT Gandhinagar

Derivative

The derivative of a function of a real variable measures the

sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

Let us consider a function f (x) = 3x2. The derivative of this

function is given by: f ′(x) = 6x .

For every unit change in x , the value of f (x) changes by 6x .

1

Derivative

The derivative of a function of a real variable measures the

sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

Let us consider a function f (x) = 3x2. The derivative of this

function is given by: f ′(x) = 6x .

For every unit change in x , the value of f (x) changes by 6x .

1

Derivative

The derivative of a function of a real variable measures the

sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

Let us consider a function f (x) = 3x2. The derivative of this

function is given by: f ′(x) = 6x .

For every unit change in x , the value of f (x) changes by 6x .

1

Derivative

The derivative of a function of a real variable measures the

sensitivity to change of the function value (output value) with

respect to a change in its argument (input value).

Let us consider a function f (x) = 3x2. The derivative of this

function is given by: f ′(x) = 6x .

For every unit change in x , the value of f (x) changes by 6x .

1

Derivative

JAX

import jax

import jax.numpy as np

def f(x):

return 3 * x ** 2

grad_f = jax.grad(f)

x = 2.0

derivative = grad_f(x)

print("f’(x) =", derivative)

Torch

import torch

def f(x):

return 3 * x ** 2

x = torch.tensor (2.0,

requires_grad=True)

y = f(x)

y.backward ()

derivative = x.grad

print("f’(x) =", derivative)

2

Partial Derivative

The partial derivative of a function of several variables is its

derivative with respect to one of those variables, with the others

held constant (as opposed to the total derivative, in which all

variables are allowed to vary).

Let us assume a function f (x , y) = 2x2 + 3y . The partial

derivative of this function with respect to x is given by: ∂f
∂x = 4x

and with respect to y is given by: ∂f
∂y = 3.

3

Partial Derivative

JAX

f = lambda x, y: 2 * x ** 2 +

3 * y

grad_f_x = jax.grad(f,

argnums =0)

grad_f_y = jax.grad(f,

argnums =1)

x = 2.0

y = 1.5

derivative_x = grad_f_x(x, y)

derivative_y = grad_f_y(x, y)

print("df/dx =", derivative_x

)

print("df/dy =", derivative_y

)

Torch

f = lambda x, y: 2 * x ** 2 +

3 * y

x = torch.tensor (2.0,

requires_grad=True)

y = torch.tensor (1.5,

requires_grad=True)

z = f(x, y)

z.backward ()

derivative_x = x.grad

derivative_y = y.grad

print("df/dx =", derivative_x

)

print("df/dy =", derivative_y

)
4

Gradient

The gradient is a multi-variable generalization of the derivative.

While a derivative can be defined on functions of a single variable,

for functions of several variables, the gradient takes its place. The

gradient is a vector-valued function, as opposed to a derivative,

which is scalar-valued.

Let us assume a function f (x , y) = 2x2 + 3y . The gradient of this

function is given by: ∇f =

[
4x

3

]
.

5

Gradient

JAX

f = lambda x, y: 2 * x ** 2 +

3 * y

grad_f = jax.grad(f, argnums

=[0, 1])

x = 2.0

y = 1.5

gradient = grad_f(x, y)

print("Gradient =", gradient)

Torch

f = lambda x, y: 2 * x ** 2 +

3 * y

x = torch.tensor (2.0,

requires_grad=True)

y = torch.tensor (1.5,

requires_grad=True)

z = f(x, y)

z.backward ()

gradient = torch.tensor ([x.

grad , y.grad])

print("Gradient =", gradient)

tensor ([8., 3.])

6

Gradient

Torch (alternative)

def f2_vectorized(input):

x, y = input

return 2*x**2 + 3*y

input = torch.tensor ([2.0, 1.5], requires_grad=True)

Torch version 1 (using .backward)

z = f2_vectorized(input)

z.backward ()

print("\nUsing Method 1 Torch")

print("Gradient: ", input.grad)

Using Method 1 Torch

Gradient: tensor ([8., 3.])

7

Jacobian

The Jacobian is a matrix that contains the partial derivatives of a

vector-valued function with respect to its input variables. For

example, let us consider the vector valued function

F (x , y , z) =

[
x2 + y2

y − z

]
. The Jacobian of this function is given by:

JF =

[
2x 2y 0

0 1 −1

]
.

In general Jacobian matrix is given as:

JF =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


8

Jacobian

Torch

import torch.autograd.functional as F

We take the Jacobian of the function f(x, y, z) = [x**2 +

y**2, y - z]

The Jacobian analytically is [[2x, 2y, 0], [0, 1, -1]]

def f1(x, y, z):

return x**2 + y**2

def f2(x, y, z):

return y - z

def f_vectorized(input):

x, y, z = input

return torch.stack([f1(x, y, z), f2(x, y, z)])

print(F.jacobian(f_vectorized , torch.tensor ([2.0 , 1.0,

3.0])))

>>>tensor ([[4., 2., -0.],

[0., 1., -1.]])

9

Hessian

The Hessian matrix or Hessian is a square matrix of second-order

partial derivatives of a scalar-valued function, or scalar field. It

describes the local curvature of a function of many variables.

For example, let us consider the function

f (x , y , z) = x2 + y2 + xyz . The Hessian of this function is given

by: Hf =

2 z y

z 2 x

y x 0

.

In general Hessian matrix is given as:

Hf =


∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n


10

Hessian

Torch

import torch.autograd.functional as F

def f(x, y, z):

return x**2 + y**2 + x * y * z

x = torch.tensor (2.0, requires_grad=True)

y = torch.tensor (1.0, requires_grad=True)

z = torch.tensor (3.0, requires_grad=True)

torch_v1_hessian = torch.tensor(F.hessian(f, (x, y, z)))

print(torch_v1_hessian)

>>>tensor ([[2., 3., 1.],

[3., 2., 2.],

[1., 2., 0.]])

11

Hessian

Torch

import torch.autograd.functional as F

def f_vectorized(input):

x, y, z = input

return x**2 + y**2 + x * y * z

print("Torch Functional method")

print(F.hessian(f_vectorized , torch.tensor ([2.0, 1.0, 3.0])

))

>>>tensor ([[2., 3., 1.],

[3., 2., 2.],

[1., 2., 0.]])

12

Hessian

We can construct the Hessian by taking the Jacobian of the

gradient. For example, let us consider the function

f (x , y , z) = x2 + y2 + xyz . The gradient of this function is given

by: ∇f =

2x + yz

2y + xz

xy

.

We can consider the first element in this vector as ∇f1, second

element as ∇f2, and so on...

So, the Hessian of this function is given by:

Hf =


∂∇f1
∂x

∂∇f1
∂y

∂∇f1
∂z

∂∇f2
∂x

∂∇f2
∂y

∂∇f2
∂z

∂∇f3
∂x

∂∇f3
∂y

∂∇f3
∂z

 =

2 z y

z 2 x

y x 0

.

13

Examples of Differentiation Terms

Term Input Example Output Example

Jacobian f(x , y) =

[
2x + y

3x − 2y

]
J =

[
2 1

3 −2

]

Hessian f (x , y) = x2 + xy + y2 H =

[
2 1

1 2

]
Derivative f (x) = 3x2 f ′(x) = 6x

Partial Derivative f (x , y) = 2x2 + 3y ∂f
∂x = 4x

Gradient f (x , y) = x2 + y2 ∇f (x , y) =

[
2x

2y

]

14

Gradient in the context of machine learning

Let us assume a simple linear regression model: y = θ0 + θ1x . We

can write this model in the form of a vector as: y =
[
θ0 θ1

] [1

x

]
.

The loss is given by: L = 1
2

∑n
i=1(yi − θ0 − θ1xi)2.

The loss is a scalar and a function of θ0 and θ1.

The gradient of the loss is given by:

∇L =

[
∂L
∂θ0
∂L
∂θ1

]
=

[∑n
i=1(yi − θ0 − θ1xi)∑n

i=1(yi − θ0 − θ1xi)xi

]
. We can now use a

first-order method like gradient descent to find the optimal values

of θ0 and θ1 as per: [
θ0

θ1

]
←

[
θ0

θ1

]
− α∇L

15

Hessian in the context of machine learning

Instead of using a first-order method like gradient descent, we can

use a second-order method like Newton’s method to find the

optimal values of θ0 and θ1.

We can write Hessian H in terms of gradient ∇L as:

H =

 ∂2L
∂θ20

∂2L
∂θ0∂θ1

∂2L
∂θ1∂θ0

∂2L
∂θ21

 =

[∑n
i=1 1

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

]
. Newton’s method

is given by:

[
θ0

θ1

]
←

[
θ0

θ1

]
− α

 ∂2L
∂θ20

∂2L
∂θ0∂θ1

∂2L
∂θ1∂θ0

∂2L
∂θ21

−1 [∂L
∂θ0
∂L
∂θ1

]
.

16

Jacobian in the context of machine learning

x

h1

h2

y

Input
Node

Hidden
Layer

Output
Node

h1 = ReLU(w11x + b1) h2 = ReLU(w12x+ = b2)

Now, let us consider the vector h =

[
h1

h2

]
.

17

