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Predict with uncertainty

Optimize any black box function

Efficiently create a training set

Generative modelling
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Far from the Moon

Feature 2

Gaussian Process Classifier Predictions
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Global Warming?
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Global Warming?

Monthly average of CO, concentration (ppm)
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Global Warming?

Monthly average of air samples measurements
from the Mauna Loa Observatory
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Identify the person




Identify the person




We used squared error loss function for linear regression.
Why?

We used cross entropy loss function for logistic regression.
Why?

How does np.random.randn work?

np.std(x) and pd.std(x) give different results. Why?
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Farmer or Librarian? (3BluelBrown)
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https://www.3blue1brown.com/lessons/bayes-theorem

Bayes Rule

P(B|A)P(A)
P(A|B) =
(A1) = =575,
Rewriting it using the ML notation:

P(0|D) = P6)

P(6|D) is called the posterior
. is called the likelihood
e P(0) is called the prior

° is called the evidence
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One Equation Throughout the Course

- PO) _ - P(9)
P(OID) = 7 - P(6)do

. Maximum Likelihood Estimation

Given a dataset D, find the parameters 6 that maximize the
likelihood of the data.

OmLE = arg meax

For example, given a linear regression problem setup, we set
the likelihood as normal distribution and find the parameters
f that maximize the likelihood of the data.




One Equation Throughout the Course

_ - P(9) _ - P(9)
POID) = — - P(0)d6

II. Maximum A Posteriori Estimation

Given a dataset D, find the parameters 6 that maximize the

posterior of the data considering both the likelihood and the
prior.

Ovap = arg max P(0|D) = arg max - P(0)

For example, given a linear regression problem, we assume
prior over the parameters 6 and find the parameters 0 that
maximize the posterior of the data.




One Equation Throughout the Course

P(6|D) = ' —

I1l. Bayesian Inference with Conjugate Priors

Find full posterior: P(6|D) given likelihood P(D|6) and prior
P(0) where the prior and the posterior belong to the same
family of distributions.
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One Equation Throughout the Course

P(6|D) = =

IV. Main Challenge in Bayesian Inference

Compute the evidence P(D) is intractable in most cases. It
involves integrating over all possible values of §. Thus, com-
puting the posterior P(6|D) is intractable in most cases.

17



One Equation Throughout the Course

_ -P(9) _ - P(6)
PID) = =T “P(0)db

Va. Approx. Bayesian Inference with Variational Inference

Approximate the posterior P(6|D) with a tractable distribu-
tion Q,(6) characterized by a set of parameters ¢. Our goal
is to find the parameters ¢ that minimize the KL divergence

between the approximate posterior Q4(#) and the true pos-
terior P(6|D).

¢vi = arg mdjn KL (Qy(0)[|P(0]D))




One Equation Throughout the Course

_ - P(9) _ - P(9)
POID) = — - P(0)d6

Vb. Approx. Bayesian Inference with Laplace Approximation

Approximate the posterior P(6|D) with a Gaussian distribu-
tion centered at the MAP estimate Opap and the covariance
matrix is the inverse of the Hessian matrix of the negative
log posterior evaluated at Opap.

P(0|D) ~ N (0]0map, H™)

H = —V2log P(0|D)

0=0map
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One Equation Throughout the Course

P(6|D) = ' =

Vc. Approx. Bayesian Inference with Sampling Methods

It is intractable to compute the posterior P(0|D) in most

cases. But, we can instead get samples from the posterior
P(6|D).
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One Equation Throughout the Course

_ - P(9) _ - P(9)
POID) = — - P(0)d6

VI. Approx. Integrals with Monte Carlo Integration

Aim: predict the model's output y* at a new input x*.

P(y*|x*,D) = /OP(y*\x*,H) - P(8|D)dé

We can instead use Monte Carlo integration to approximate
the above integral as follows:

S
P(y*|x*, D) ~ §Z (y*[x*, 0s)

where 65 ~ P(6|D).
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