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Overall idea

e Posterior distribution p(@|D) might be intractable but we can
compute the MAP estimate.

e We know that posterior would be in form: p(8|D) = $p(D,0),
where Z is the normalizing constant.

e We can approximate this posterior using Taylor series expansion
around the MAP estimate and it turns out that, after making a
few assumptions, the resulting distribution is a Gaussian:
p(0|D) ~ N(6|0map, (V2F(Omap)) L), where f is the negative
log joint evaluated at O@pap and V2f is the Hessian matrix of f.



History



e Wiki article on Taylor’s series

e Wiki article on Madhava and Madhava’s series



Taylor Series Expansion



1D Taylor Series

+ (x—x0)*+...



Taylor Approximation of a 1D Function

Consider the following function:

f(x) =sin(1 + x)




Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:

f(x)=0.84

— f(x)

Taylor aproximation
Polynomial degree: 0
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Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:
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f(x)=0.84 + 0.54

f(x)
Taylor aproximation
Polynomial degree: 1




Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:
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f(x)=0.84 + 0.54!
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Taylor aproximation
Polynomial degree: 2




Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:
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Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:

. . o . o
fx)=0.84 + 0542200 . 0 g4« 00" 546000 | g4=000
n 2! £l ]
T T
ki \ P [—
= ‘| ,' ___ Tayloraproximation
= 01 ! Polynomial degree: 4
(@

10



Taylor Approximation of a 1D Function

Taylor approximation at xp = O:

fx)=0.84 + 0.54%-0.00"
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Taylor Approximation of a 1D Function

Taylor approximation at xg = 0:
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ND Taylor Series



ND Taylor Series

el

(x) = f(x0) + VF(x0) T (x —x0) + = (x — x0) T V?F(x0)(x — x0) + . ..
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Approximate a 2d function

We take the following function:

f(x1,x2) = sin(1 4+ x1 + x2)
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Approximate a 2d function

Taylor approximation at xp = (0, 0):

Taylor approximation
Polynomial degree: 1
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Approximate a 2d function

Taylor approximation at xp = (0, 0):

Taylor approximation
Polynomial degree: 2

Cross section at x; =0
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Laplace Approximation



Laplace Approximation

p(6]D) = 2 p(D.6)
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Laplace Approximation

We can rewrite this as:
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Laplace Approximation

We can rewrite this as:

Note that f(6) is the negative log joint which is used as a loss
function to estimate @ pap.
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Laplace Approximation

e Highest mass is concentrated around @pap and hence it makes
sense to get Taylor approximation around that point.
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Laplace Approximation

e Highest mass is concentrated around @pap and hence it makes
sense to get Taylor approximation around that point.

e In other words, if our approximation is bad where we have low
probability mass, it doesn’t matter much.
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Laplace Approximation

e Highest mass is concentrated around @pap and hence it makes

sense to get Taylor approximation around that point.

e In other words, if our approximation is bad where we have low

probability mass, it doesn’t matter much.

e Thus, we approximate f(0) as f(B) around @ pap using Taylor
series expansion up to second derivative:

f(0) = f(Omap) + VF(Omapr) (0 — Opap)

1
+ 5(9 — Omap) V2 (Omap)(0 — Omap)
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Laplace Approximation

f(0) = f(Omap) + VF(Omapr) (0 — Opap)

1
+5(0 - Omar) " V2F(Ormar)(0 — Omap)
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Laplace Approximation

F(O) = f(OMAP) + Vf(BMAP)T(O - GMAP)
+ 16/~ Buae) V2 (Ouiar) (0 — Owiae)

Since, Opap is minima of £(0), Vf(Opap) = 0.
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Laplace Approximation

F(O) = f(OMAP) + Vf(BMAP)T(O - GMAP)
+ 16/~ Buae) V2 (Ouiar) (0 — Owiae)

Since, Opap is minima of £(0), Vf(Opap) = 0.

f(O) = f(eMAp) + %(9 = GMAP)TV2f(9MAP)(9 — HMAP)
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Laplace Approximation

F(O) = f(OMAP) + Vf(eMAP)T(O - GMAP)
+ 16/~ Buae) V2 (Ouiar) (0 — Owiae)

Since, Opap is minima of £(0), Vf(Opap) = 0.

f(O) = f(eMAp) + %(9 = GMAP)TV2f(9MAP)(9 — OMAP)

where V2f(Oyap) is the Hessian matrix of f(6) evaluated at Oy ap.
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Laplace Approximation

Plugging this back to the posterior equation:

p(0|D) = %e_f(e) where f(8) = — log p(D, 0)
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Laplace Approximation

Plugging this back to the posterior equation:

p(0|D) = %e_f(e) where f(8) = — log p(D, 0)

~ le_f(eMAP) e_%(G_QMAP)TVZf(eMAP)(e_eMAP)
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Laplace Approximation

Plugging this back to the posterior equation:

p(0|D) = ?e—f(e) where f(8) = — log p(D, 0)
~ le_f(eMAP)e_%(G_GMAP)TVZf(eMAP)(e—BMAP)
V4
1

= p(D, Oyiap)e2(O—0mar)TV?F(Oar)(0—Ouar)
Z b
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Laplace Approximation

Plugging this back to the posterior equation:

1
p(0|D) = ?e—f(e) where f(8) = — log p(D, 0)
~ le_f(eMAP)e_%(G_GMAP)TVZf(eMAP)(e—BMAP)
V4
1

= p(D, Oyiap)e2(O—0mar)TV?F(Oar)(0—Ouar)
Z )

p(OID) ~ N (610map, (VF(Ouar)) ")
Z = p(D, Buap) - (2m)P/2 - [V?F(Omap)|
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Pros and Cons of Laplace Approximation

e Pros:

e Simple to implement
e Computationally efficient
e Can be used to approximate any intractable function
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https://github.com/AlexImmer/Laplace

Pros and Cons of Laplace Approximation

e Pros:
e Simple to implement
e Computationally efficient
e Can be used to approximate any intractable function

e Cons:
e |t can give bad approximation when posterior is not unimodal
e Gaussian assumption can be too restrictive at times
e Hessian matrix inversion can be numerically unstable and
expensive. A diagonal or block-wise approximation can be applied
to resolve this. Checkout Laplace-Redux for more details.
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https://github.com/AlexImmer/Laplace

Beta-Bernoulli Coin Toss

Let's take Beta-Bernoulli Coin Toss example since we know the closed
form posterior for it. Consider the following scenario:
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Beta-Bernoulli Coin Toss

Let's take Beta-Bernoulli Coin Toss example since we know the closed
form posterior for it. Consider the following scenario:

e D=1{1,1,1,1,1,1,1,1,0}
p(0) = Beta(a = 2,8 = 2)
0 = P(H)

p(y|0) =6 (1—0)*
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Beta-Bernoulli Coin Toss

Let's take Beta-Bernoulli Coin Toss example since we know the closed
form posterior for it. Consider the following scenario:

e D=1{1,1,1,1,1,1,1,1,0}
p(0) = Beta(a = 2, = 2)
0 = P(H)

p(yl0) =67 (1—0)~
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Beta-Bernoulli Coin Toss

MAP estimate:
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Beta-Bernoulli Coin Toss

Laplace Approximation:

—— Prior
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Multi-Mode example

Consider a Gaussian Mixture distribution with two modes. We assume
that, it is an unnormalized density and we want to get normalized
Laplace approximation of it.
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Multi-Mode example

Consider a Gaussian Mixture distribution with two modes. We assume
that, it is an unnormalized density and we want to get normalized
Laplace approximation of it.

7 3
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Multi-Mode example

Consider a Gaussian Mixture distribution with two modes. We assume

that, it is an unnormalized density and we want to get normalized
Laplace approximation of it.

7 3
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Multi-Mode example

Laplace Approximation:
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