
Laplace Approximation

Zeel B Patel, Nipun Batra

August 28, 2023

IIT Gandhinagar



Outline

History

Taylor Series Expansion

ND Taylor Series

Laplace Approximation

Brook Taylor

Pierre-Simon Laplace
1



Overall idea

• Posterior distribution p(θ|D) might be intractable but we can

compute the MAP estimate.

• We know that posterior would be in form: p(θ|D) = 1
Z p(D,θ),

where Z is the normalizing constant.

• We can approximate this posterior using Taylor series expansion

around the MAP estimate and it turns out that, after making a

few assumptions, the resulting distribution is a Gaussian:

p(θ|D) ≈ N (θ|θMAP , (∇2f (θMAP))−1), where f is the negative

log joint evaluated at θMAP and ∇2f is the Hessian matrix of f .
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History



• Wiki article on Taylor’s series

• Wiki article on Madhava and Madhava’s series
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Taylor Series Expansion



1D Taylor Series

f̃ (x) = f (x0)+ f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2+

f ′′′(x0)

3!
(x−x0)3+ . . .
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Taylor Approximation of a 1D Function

Consider the following function:

f (x) = sin(1 + x)
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Taylor Approximation of a 1D Function

Taylor approximation at x0 = 0:
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Taylor aproximation
Polynomial degree: 0
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Taylor Approximation of a 1D Function
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ND Taylor Series



ND Taylor Series

f̃ (x) = f (x0) +∇f (x0)T (x − x0) +
1

2
(x − x0)T∇2f (x0)(x − x0) + . . .
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Approximate a 2d function

We take the following function:

f (x1, x2) = sin(1 + x1 + x2)
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Approximate a 2d function

Taylor approximation at x0 = (0, 0):
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Laplace Approximation

p(θ|D) =
1

Z
p(D,θ)

We can rewrite this as:

p(θ|D) =
1

Z
e−f (θ)

f (θ) = − log p(D,θ)

Note that f (θ) is the negative log joint which is used as a loss

function to estimate θMAP .
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Laplace Approximation

• Highest mass is concentrated around θMAP and hence it makes

sense to get Taylor approximation around that point.

• In other words, if our approximation is bad where we have low

probability mass, it doesn’t matter much.

• Thus, we approximate f (θ) as f̃ (θ) around θMAP using Taylor

series expansion up to second derivative:

f̃ (θ) = f (θMAP) +∇f (θMAP)T (θ − θMAP)

+
1

2
(θ − θMAP)T∇2f (θMAP)(θ − θMAP)
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Laplace Approximation

f̃ (θ) = f (θMAP) +∇f (θMAP)T (θ − θMAP)

+
1

2
(θ − θMAP)T∇2f (θMAP)(θ − θMAP)

Since, θMAP is minima of f (θ), ∇f (θMAP) = 0.

f̃ (θ) = f (θMAP) +
1

2
(θ − θMAP)T∇2f (θMAP)(θ − θMAP)

where ∇2f (θMAP) is the Hessian matrix of f (θ) evaluated at θMAP .
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Laplace Approximation

Plugging this back to the posterior equation:

p(θ|D) =
1

Z
e−f (θ) where f (θ) = − log p(D,θ)

≈ 1

Z
e−f (θMAP)e−

1
2
(θ−θMAP)

T∇2f (θMAP)(θ−θMAP)

=
1

Z
p(D,θMAP)e−

1
2
(θ−θMAP)

T∇2f (θMAP)(θ−θMAP)

p(θ|D) ≈ N
(
θ|θMAP ,

(
∇2f (θMAP)

)−1)
Z = p(D,θMAP) · (2π)D/2 · |∇2f (θMAP)|−

1
2
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Pros and Cons of Laplace Approximation

• Pros:

• Simple to implement

• Computationally efficient

• Can be used to approximate any intractable function

• Cons:

• It can give bad approximation when posterior is not unimodal

• Gaussian assumption can be too restrictive at times

• Hessian matrix inversion can be numerically unstable and

expensive. A diagonal or block-wise approximation can be applied

to resolve this. Checkout Laplace-Redux for more details.

21

https://github.com/AlexImmer/Laplace
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Beta-Bernoulli Coin Toss

Let’s take Beta-Bernoulli Coin Toss example since we know the closed

form posterior for it. Consider the following scenario:

• D = {1, 1, 1, 1, 1, 1, 1, 1, 0}
• p(θ) = Beta(α = 2, β = 2)

• θ = P(H)

• p(y |θ) = θy (1− θ)1−y
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Beta-Bernoulli Coin Toss

MAP estimate:
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Beta-Bernoulli Coin Toss

Laplace Approximation:
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Multi-Mode example

Consider a Gaussian Mixture distribution with two modes. We assume

that, it is an unnormalized density and we want to get normalized

Laplace approximation of it.

p(θ) =
7

10
N (θ| − 2, 1) +

3

10
N (θ|2, 1)
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Multi-Mode example

Laplace Approximation:
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