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Graphical model

Assume model parameters are θ and data is D. We can write the

joint probability distribution as:

x1 · · · xN

N
σµ

3



Graphical model

Assume model parameters are θ and data is D. We can write the

joint probability distribution as:

xn

N

σµ

n = 1, · · · ,N
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Factorisation

P(D|θ) = P(x1, x2, . . . , xn|θ)

= P(x1|θ) · P(x2|θ) · . . . · P(xn|θ)

5



MLE



Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5
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Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5

I randomly pick up a student and ask them their marks. They say

82. Which course do you think they are from? To keep things

simple, for now assume that all three courses have equal number of

students.
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Pop Quiz

We have three courses: C1, C2, C3. Assume no student takes

more than one course. The scores of students in these courses are

normally distributed with the following parameters:

• C1: µ1 = 80, σ1 = 10

• C2: µ2 = 70, σ2 = 10

• C3: µ3 = 90, σ3 = 5

I randomly pick up a student and ask them their marks. They say

82. Which course do you think they are from?

Most likely C1. But why?
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Pop Quiz

Let us plot the probability density functions of the three courses.

0 20 40 60 80 100

Marks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

ab
ilit

y

Class
C1
C2
C3

9



Pop Quiz

Let us plot the probability density functions of the three courses.
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?

Let us evaluate probability density function at 20 for different

values of µ for σ = 1, i.e., f (x = 20|µ, σ = 1).
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Pop Quiz 2

Let us say we observed a value of 20. We know it came from a

normal distribution with σ = 1. What is the most likely value of µ?

20. But why?

Let us evaluate probability density function at 20 for different

values of µ for σ = 1, i.e., f (x = 20|µ, σ = 1).

Importantly, this is a function of µ and not x (which is fixed at 20).
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Pop Quiz 3

Let us now go back to our original problem. We have three courses:

C1, C2, C3. Assume no student takes more than one course.

We ask two students their marks. The first student says 82 and

the second student says 72. Which course do you think they are

from? Assumption: Both are from the same course.

Let us create a table of probabilities for each course:
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MLE for Bernoulli Distribution



MLE for Bernoulli Distribution

The probability mass function of a bernoulli distribution is given by:

f (x |θ) = θx(1− θ)(1−x) (1)

Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution and

xi ∈ {0, 1}. We want to estimate the parameter θ from the data.

xi

θ

i = 1, · · · ,N
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Log Likelihood Function

Our likelihood function is given by:

P(D|θ) = L(θ) =
n∏

i=1

f (xi |θ) (2)

Log-likelihood function:

logL(θ) =
n∑

i=1

log f (xi |θ) (3)

Simplifying the above equation, we get:

logL(θ) =
n∑

i=1

log f (xi |θ)

=
n∑

i=1

log
(
θxi (1− θ)(1−xi )

)
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logL(θ) =
n∑

i=1

(
log (θxi ) + log

(
(1− θ)(1−xi )

))
=

n∑
i=1

(xi log (θ) + (1− xi ) log (1− θ))

Log Likelihood Function for Bernoulli Distribution

Log-likelihood function for Bernoulli distributed data is:

logL(θ) =
n∑

i=1

(xi log(θ) + (1− xi ) log(1− θ))
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Maximum Likelihood Estimate for θ

To find the MLE for θ, we differentiate the log-likelihood function

with respect to θ and set it to zero:

∂ logL(θ)

∂θ
=

∂

∂θ

(
n∑

i=1

(xi log (θ) + (1− xi ) log (1− θ))

)

=
n∑

i=1

(
∂

∂θ
(xi log (θ)) +

∂

∂θ
(1− xi ) log (1− θ)

)

=
n∑

i=1

(
xi
∂

∂θ
log (θ) + (1− xi )

∂

∂θ
log (1− θ)

)

=
n∑

i=1

(
xi
θ
− (1− xi )

1− θ

)
= 0
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∂ logL(θ)

∂θ
=

n∑
i=1

(
xi (1− θ)− θ(1− xi )

θ(1− θ)

)
= 0

=
n∑

i=1

(
xi − xiθ − θ + θxi

θ(1− θ)

)

=
n∑

i=1

(
xi − θ
θ(1− θ)

)

=
n∑

i=1

(xi − θ) = 0

=
n∑

i=1

xi −
n∑

i=1

θ = 0

=
n∑

i=1

xi − nθ = 0
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θ =

∑n
i=1 xi
n

Maximum Likelihood Estimate for θ

MLE of θ, denoted as θ̂MLE, is given by:

θ̂MLE =

∑n
i=1 xi
n

23



The data, D consists of the results of coin tosses which can be

H/T . Let suppose D1 = (T ,H,T ,T ,T ,T ,H,T ,T ,T ). By

calculating θMLE , we get its value as 0.2. We vary θ from 0 to 1

and calculate the likelihood at each value. We find that the

likelihood is maximum around θ = 0.2 which is our MLE estimate.
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Data, D2 = (H,H,H,H,H,H,T ,T ,T ,T ).

True θ = 0.6.

Corresponding plot of likelihood P(D|θ) V/s θ is given below:
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1e 7 Likelihood function for Bernoulli distribution
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Data, D3 = (H,H,H,H,H,H,T ,H,H,T ).

True θ = 0.9.

Corresponding plot of likelihood P(D|θ) V/s θ is given below:
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MLE for Univariate Normal

Distribution



Univariate Normal Distribution

The probability density function of a univariate normal distribution

is given by:

f (x |µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
(4)

Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution. We want

to estimate the parameters θ = {µ, σ} from the data.

Our likelihood function is given by:

P(D|θ) = L(µ, σ2) =
n∏

i=1

f (xi |µ, σ2) (5)
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Log Likelihood Function

Log-likelihood function:

logL(µ, σ2) =
n∑

i=1

log f (xi |µ, σ2) (6)

Simplifying the above equation, we get:

logL(µ, σ2) =
n∑

i=1

log f (xi |µ, σ2)

=
n∑

i=1

log

(
1√

2πσ2
exp

(
−(xi − µ)2

2σ2

))

=
n∑

i=1

(
log

(
1√

2πσ2

)
+ log

(
exp

(
−(xi − µ)2

2σ2

)))
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logL(µ, σ2) =
n∑

i=1

(
log

(
1√

2πσ2

)
− (xi − µ)2

2σ2

)

=
n∑

i=1

(
−1

2
log(2πσ2)− (xi − µ)2

2σ2

)

= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

logL(µ, σ2) = −n

2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(xi − µ)2
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Maximum Likelihood Estimate for µ

To find the MLE for µ, we differentiate the log-likelihood function

with respect to µ and set it to zero:

∂ logL(µ, σ2)

∂µ
=

∂

∂µ

(
−n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

)
= 0

∂

∂µ

(
n∑

i=1

(xi − µ)2

)
= 0

Maximum Likelihood Estimate for µ

MLE of µ, denoted as µ̂MLE, is given by:

µ̂MLE =
1

n

n∑
i=1

xi
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MLE for σ for normally distributed data

Recall that the log-likelihood function is given by:

logL(µ, σ2) =
n∑

i=1

log f (xi |µ, σ2) (7)

Let us find the maximum likelihood estimate of σ2 now. We can

do this by taking the derivative of the log-likelihood function with

respect to σ2 and equating it to zero.

∂ logL(µ, σ2)

∂σ2
=

n∑
i=1

∂ log f (xi |µ, σ2)

∂σ2
= 0 (8)
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MLE for σ for normally distributed data

Log Likelihood Function for Univariate Normal Distribution

Log-likelihood function for normally distributed data is:

logL(µ, σ2) = −n

2
log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(xi − µ)2

Now, we can differentiate the log-likelihood function with respect

to σ and equate it to zero.

32



MLE for σ for normally distributed data

∂

∂σ
logL(µ, σ2) = −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 = 0

Multiplying through by σ3, we have:

−nσ2 +
n∑

i=1

(xi − µ)2 = 0

Maximum Likelihood Estimate for σ2

MLE of σ2, denoted as σ̂2
MLE, is given by:

σ2 =
1

n

n∑
i=1

(xi − µ)2
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MLE for Multivariate Normal

Distribution



MLE for Multivariate Normal Distribution

The probability density function of a multivariate normal

distribution is given by:

f (x |µ,Σ) = (2π)−
k
2 det(Σ)−

1
2 exp−

1
2

(x−µ)T Σ−1(x−µ) (9)

Xi

N

Σµ

i = 1, · · · ,N
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Let us assume we have a dataset D = {x1, x2, . . . , xn}, where each

xi is an independent sample from the above distribution. We want

to estimate the parameters θ = µ, σ from the data.

Our likelihood function is given by:

P(D|θ) = L(µ,Σ) =
n∏

i=1

f (xi |µ,Σ) (10)
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For example: A bivariate Normal distribution can be visualized as

given below:
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Log Likelihood Function

Log-likelihood function:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ) (11)

Simplifying the above equation, we get:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ)

=
n∑

i=1

log
(

(2π)−
k
2 det(Σ)−

1
2 exp−

1
2

(xi−µ)T Σ−1(xi−µ)
)

=
n∑

i=1

log((2π)−
k
2 ) +

n∑
i=1

log(det(Σ)−
1
2 )+

n∑
i=1

log(exp−
1
2

(xi−µ)T Σ−1(xi−µ)))
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Continuing, we get:

= −kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

Log Likelihood Function for Multivariate Normal Distribution

Log-likelihood function for multivariate normally distributed

data is:

−kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)
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Maximum Likelihood Estimate for µ

To find the MLE for µ, we differentiate the log-likelihood function

with respect to µ and set it to zero:

=
∂

∂µ

(
−kn

2
log(2π)− n

2
log(Σ)− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

=
∂

∂µ

(
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

= −1

2

n∑
i=1

(
Σ−1(xi − µ) + (xi − µ)TΣ−1

)
= 0

= −1

2

n∑
i=1

2Σ−1(xi − µ) = 0

as (xi − µ)TΣ−1 = Σ−1(xi − µ)
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= Σ−1
n∑

i=1

(xi − µ) = 0

=
n∑

i=1

(xi )− nµ = 0

µ =

∑n
i=1 xi
n

Maximum Likelihood Estimate for µ

MLE of µ, denoted as µ̂MLE, is given by:

µ̂MLE =
1

n

n∑
i=1

xi
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MLE for Σ for multivariate normally distributed data

Recall that the log-likelihood function is given by:

logL(µ,Σ) =
n∑

i=1

log f (xi |µ,Σ) (12)

Let us find the maximum likelihood estimate of Σ now. We can do

this by taking the derivative of the log-likelihood function with

respect to Σ and equating it to zero.

∂ logL(µ,Σ)

∂Σ
=

n∑
i=1

∂ log f (xi |µ,Σ)

∂Σ
= 0 (13)
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After differentiating and simplifying, we get:

Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

Maximum Likelihood Estimate for Σ

MLE of Σ, denoted as Σ̂MLE, is given by:

Σ̂MLE =
1

n

n∑
i=1

(xi − µ)(xi − µ)T
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MLE for Linear Regression



MLE for Linear Regression

0 2 4 6 8 10
x

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

y

Linear Regression
True Function

43



MLE for Linear Regression
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MLE for Linear Regression
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We consider a regression problem with the likelihood function:

p(y |x) = N(y |f (x), σ2).

Let us assume we have a dataset

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ Rd , yi ∈ R.

46



The functional relationship between x and y is given as

y = f (x) + ε where ε ∼ N(0, σ2).

Thus f (x) = xT θ.

xiθ yixi

θ

N

σ0

i = 1, · · · ,N
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Our likelihood function (Normal distribution) is given by:

P(Y|X , θ) = p(y1, . . . , yn|x1, . . . , xn, θ) =
n∏

i=1

p(yi |xi , θ) (14)

The MLE equation is given by:

θMLE ∈ argθ max p(Y |X , θ) (15)

Maximizing the likelihood ≡ Maximizing the log likelihood ≡
Minimizing the negative log likelihood.

Taking negative log, we get:

− log p(Y | X ,θ) = − log
N∏
i=1

p (yi | x i ,θ) = −
N∑
i=1

log p (yi | x i ,θ)

For a given point (xi , yi ),

− log p (yi | x i ,θ) = − 1

2σ2

(
yi − x>i θ

)2
+ const

48



Thus the negative log likelihood is simplified to:

−L(θ) := − 1

2σ2

N∑
i=1

(
yi − x>i θ

)2

= − 1

2σ2
(y − Xθ)>(y − Xθ) = − 1

2σ2
‖y − Xθ‖2

NLL Equation

NLL is equal to:

− 1

2σ2
‖y − Xθ‖2

This is none other than squared error loss!
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To minimize this, we differentiate wrt θ. In the end, we get:

θ = (XTX )−1XT y (16)

Maximum Likelihood Estimate for θ

MLE of θ, denoted as θ̂MLE, is given by:

θ̂MLE = (XTX )−1XT y

50
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MLE for Logistic Regression



MLE for Logistic Regression

xiθxi

θ

p(xi ) β yi

i = 1, · · · ,N

σ

Binary Classification:

The probability distribution in case of Logistic Regression

considering two classes is Bernoulli distribution but there is a slight

difference. The probability is now the output of the logistic

function. Parameters are θ = [θ0, θ1].

p = P(Y = 1|X ) =
1

1 + e−(θ0+θ1X )
(17)
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Rewriting the likelihood in this manner:

L(θ) =
∏
yi=1

p(xi )
∏
yi=0

(1− p(xi ))

=
∏(

p(xi )
yi (1− p(xi ))1−yi

)
Taking log on both sides:

log(L(θ)) =
n∑

i=1

yi log(p(xi )) + (1− yi ) log(1− p(xi ))

If we multiply this by − 1
n ,this is nothing but the binary cross

entropy loss function!
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Coin toss V/s Binary Logistic Regression

Coin toss Binary Logistic Regression

Likelihood=θt(1− θ)1−t Likelihood=(σ(xT θ))t(1− σ(xT θ))1−t

Outcome is Head/Tail Outcome is out of two possible classes

Parameter is scalar Parameter is vector with two values

59



Coin toss V/s Binary Logistic Regression

Coin toss Binary Logistic Regression

Likelihood=θt(1− θ)1−t Likelihood=(σ(xT θ))t(1− σ(xT θ))1−t

Outcome is Head/Tail Outcome is out of two possible classes

Parameter is scalar Parameter is vector with two values
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Coin toss V/s Binary Logistic Regression

Coin toss Binary Logistic Regression

Likelihood=θt(1− θ)1−t Likelihood=(σ(xT θ))t(1− σ(xT θ))1−t

Outcome is Head/Tail Outcome is out of two possible classes

Parameter is scalar Parameter is vector with two values
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xiθxi

θ

p(xi ) β yi

i = 1, · · · ,N

s

Multi-class Classification:

The probability distribution in case of Logistic Regression

considering more than two classes is Categorical distribution. The

probability is now the output of the softmax function. Parameters

are θ = [θ0, θ1, . . . , θk ].

p = P(Y = i |X ) =
eθxi∑n
j=1 e

θxj
(18)
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Now:

L(θ) =
n∏

i=1

K∏
j=1

pj(xi )

Taking log on both sides:

log(L(θ)) =
n∑

i=1

K∑
j=1

yki log(pk(xi ))

If we multiply this by − 1
n ,this is nothing but the cross entropy loss

function!
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Now if we differentiate this wrt θ, it is difficult to find a analytical

solution with it. Thus in order to solve for MLE for logistic

regression, methods like Gradient Descent, Newton-Raphson, etc.

are used. For example through Gradient descent, the below

decision boundary i.e. θ has been calculated.
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Binary V/s Multiclass Logistic Regression

Binary Logistic Regression Multiclass Logistic Regression

Binary Cross Entropy Loss Cross Entropy Loss

p(x) = σ(xT θ) p(x) = s(xT θ)

Bernoulli Likelihood Categorical Likelihood
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Random variable and Random sample

Random variable: X : Ω→ R is a function from the sample space

to the real line.

Random sample: Collection of n independent and identically

distributed (i.i.d.) random variables X1,X2,X3, . . . ,Xn. A group of

experiments constitutes a sample.

For example:

Random variable: Y (possible outcomes 1 to 6)

Random sample: 4,2,6 (outcomes of three consecutive die tosses)
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Bias of an Estimator

Bias of an Estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

Bias(θ̂) = E(θ̂)− θ

where E(θ̂) is the expected value of the estimator θ̂.

• An estimator is said to be unbiased if Bias(θ̂) = 0.

• An estimator is said to be biased if Bias(θ̂) 6= 0.
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Bias of an Estimator: µ̂MLE

Question: What is the expectation of µ̂MLE calculated over? What

is the source of randomness?

If X ′i s are normally distributed random variables with mean µ and

variance σ2 respectively, then E (Xi ) = µ and Var(Xi ) = σ2.

Recall that if an estimator θ̂ of a parameter θ is unbiased then:

E(θ̂) = θ.
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Bias of an Estimator: µ̂MLE

E(µ̂MLE ) = E(X̄ )

= E

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E(Xi )

=
1

n
(nµ) = µ

Estimator µ̂MLE is unbiased

E(µ̂MLE ) = µ
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Bias of σ2
MLE

The MLE of σ2 is given by

σ̂2
MLE = 1

n

∑n
i=1(xi − x̄)2.

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

=
1

n

n∑
i=1

x2
i − 2x̄xi + x̄2 =

1

n

n∑
i=1

x2
i − 2x̄

1

n

n∑
i=1

xi + x̄2

=
1

n

n∑
i=1

x2
i − x̄2
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Bias of σ2
MLE

E(σ̂2) = E

[
1

n

n∑
i=1

X 2
i − X̄ 2

]
=

[
1

n

n∑
i=1

E(X 2
i )

]
− E(X̄ 2)

=
1

n

n∑
i=1

(
σ2 + µ2

)
−
(
σ2

n
+ µ2

)
=

1

n

(
nσ2 + nµ2

)
− σ2

n
− µ2

= σ2 − σ2

n
=

nσ2 − σ2

n
=

(n − 1)σ2

n

Estimator σ̂MLE is biased

E(σ̂MLE ) = (n−1)σ2

n
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Bias
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Bias
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Bias
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Bias
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Bias
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MAP Plate Notation for Beta-Bernoulli

xn

µ

Ber

βα

Beta

n = 1, · · · ,N
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