Principal Component Analysis (PCA)




o Images of digits (e.g., MNIST): Each image is 784-dimensional
e Sensors on wearables: 10s—100s of channels, high redundancy

e Environmental data: temperature, humidity, air quality across

locations
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Goal: Reduce dimensions while preserving key structure



e Data lives in high dimensions but often varies in a

low-dimensional subspace

e PCA finds new axes (principal directions) capturing maximum
variance

e Reduces noise, saves space, helps visualize
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Key ldea
Project data onto top-k directions of highest variance
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Given: Data matrix X € R"<9

1. Center the data: Xcentered = X —

2. Compute covariance:

Y = lXTX
n

3. Eigendecompose:
¥ = UNUT

4. Project onto top-k components:

Z = XUy
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Center data: X_centered = X - X.mean(0)

Covariance: cov = X_centered.T @ X_centered / N

Eigenvectors: eigvals, eigvecs =
torch.linalg.eigh(cov)

Project: X_proj = (X @ eigvecs[:, -k:])
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e PCA finds orthogonal directions of max variance
e Works via eigendecomposition of the covariance

e Useful for compression, denoising, visualization
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Next: PCA for downstream ML tasks



