
Principal Component Analysis (PCA)
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Motivating Examples

• Images of digits (e.g., MNIST): Each image is 784-dimensional

• Sensors on wearables: 10s–100s of channels, high redundancy

• Environmental data: temperature, humidity, air quality across

locations

Goal: Reduce dimensions while preserving key structure
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Why PCA? Intuition

• Data lives in high dimensions but often varies in a

low-dimensional subspace

• PCA finds new axes (principal directions) capturing maximum

variance

• Reduces noise, saves space, helps visualize

Key Idea
Project data onto top-k directions of highest variance
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Visual Intuition: Elliptical Gaussians

pca_ellipse.png

• Stretch along eigenvectors of covariance

• Ellipse axes ∝
√
λ1,

√
λ2

• Principal directions = eigenvectors of covariance matrix
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Minimal Math

Given: Data matrix X ∈ Rn×d

1. Center the data: Xcentered = X − µ

2. Compute covariance:

Σ =
1

n
X⊤X

3. Eigendecompose:

Σ = UΛU⊤

4. Project onto top-k components:

Z = XUk

Reconstruction: X̂ = ZU⊤
k + µ
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In Code (PyTorch)

• Center data: X centered = X - X.mean(0)

• Covariance: cov = X centered.T @ X centered / N

• Eigenvectors: eigvals, eigvecs =

torch.linalg.eigh(cov)

• Project: X proj = (X @ eigvecs[:, -k:])
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Example: MNIST Digits

mnist_pca_recon.png

Top component captures most variation.
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Summary

• PCA finds orthogonal directions of max variance

• Works via eigendecomposition of the covariance

• Useful for compression, denoising, visualization

Next: PCA for downstream ML tasks
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