ES114: Probability, Statistics, and Data Visualization

Conditional Distributions 1st April 2025

Recap

- Previous
 - ► Joint Distributions

Recap

- Joint Distributions
- ► Joint Expectations

- Joint Distributions
- ► Joint Expectations
- Covariance and Correlation

- Joint Distributions
- Joint Expectations
- Covariance and Correlation
- Conditional Distribution

- Joint Distributions
- Joint Expectations
- Covariance and Correlation
- Conditional Distribution
- Conditional Expectation

References

- https://probability4datascience.com/slides/Slide_5_04.pdf
- https://probability4datascience.com/slides/Slide_5_05.pdf
- Other references
 - https://online.stat.psu.edu/stat414/lesson/19/19.1
 - https://stats.libretexts.org/Bookshelves/Probability_Theory/ Introductory_Probability_(Grinstead_and_Snell)/04% 3A_Conditional_Probability/4.02%3A_Continuous_Conditional_Probability

Safety measure vs Injury 🛛 🗙

$$\int (X=0) \qquad \sum_{x \in Y} \sum_{y \in Y} f(x,y) = 1$$

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)	0.065	0.075	0.060	0.200	
Minor (1)	0.175	0.160	0.115	0.450	
Major (2)	0.135	0.100	0.065	0.300	
Death (3)	0.025	0.015	0.010	0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)	0.065	0.075	0.060	0.200	
Minor(1)	0.175	0.160	0.115	0.450	
Major (2)	0.135	0.100	0.065	0.300	
Death (3)	0.025	0.015	0.010	0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	

What is the probability that a randomly selected person was wearing only a seat belt and had only a minor injury?

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)	0.065	0.075	0.060	0.200	
Minor (1)	0.175	0.160	0.115	0.450	
Major (2)	0.135	0.100	0.065	0.300	
Death (3)	0.025	0.015	0.010	0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	

What is the probability that a randomly selected person was wearing only a seat belt and had only a minor injury? $0.16\,$

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	None (0) Belt Only (1) Belt and Harness (2)			
None (0)	0.065	0.075	0.060	0.200	
Minor (1)	0.175	0.160	0.115	0.450	
Major (2)	0.135	0.100	0.065	0.300	
Death (3)	0.025	0.015	0.010	0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	

Safety measure vs Injury

-

	V			
f(x,y)		Safety Meas	sure (Y)	$f_X(x)$
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
None (0)	ו י¢ / 0.065 (יי	0.075	0.060	0.200
Minor (1)	0.175	0.160	0.115	0.450
Major (2)	0.135/	0.100	0.065	0.300
Death (3)	0.025/ ∿∿	0.015	0.010	0.050
$f_Y(y)$	0.400	0.350	0.250	1.000

If a randomly selected person takes no safety measure, what is the probability of death?

$$P_{\mathcal{X}}\left(X=3 \mid Y=0\right) = \frac{P_{\mathcal{X}}\left(X=3, Y=0\right)}{P_{\mathcal{X}}\left(Y=0\right)} = \frac{0.02Y}{0.04}$$

5/24

$$P_{X}(x = 0 | y = 0) = \underbrace{0.055}_{0.4} = 0.1625$$

$$P_{A}(x = 1 | y = 0) = \underbrace{0.035}_{0.4}$$

$$P_{A}(x = 2 | y = 0) = \underbrace{0.035}_{0.4} = \underbrace{0.035}_{0.4}$$

$$P_{X}(x) = \underbrace{0.2}_{0.4} = \underbrace{0.035}_{0.4}$$

$$P_{X}(x) = \underbrace{0.035}_{0.4} = \underbrace{0.035}_{0.4}$$

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)	0.065/02	- 0.075/02	0.060 / 1 1 2	0.200	
Minor (1)	0.175 / 0. `	15 0.160) 0 145	0.115	0.450	
Major (2)	0.135	0.100	0.065	0.300	
Death (3)	0.025	0.015	0.010	0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	

Safety measure vs Injury

.

tor 1 >

F	X Y(X Y)					
f(x,y)		Safety Measure (Y)				
Injury (X)	None (0) B	elt Only (1)	Belt and Harness (2)			
None (0)	(0.065/∘.ч	0.075 /o zso	0.060	0.200		
Minor (1)	< 0.175 /o[™]	0.160/0·5 so	0.115	0.450		
Major (2)	(0.135 /o·Y	0.100/0357	0.065	0.300		
Death (3)	0.025 /0.4	0.015 / 0.250	0.010	0.050		
$f_Y(y)$	0.400	0.350	0.250	1.000		

If a randomly selected person takes no safety measure, what is the probability of \boldsymbol{X} ?

The distribution of subpopulation having some characteristic fixed.

$$\int x_{1y} (x|y=1) \leftarrow$$

$$\int x_{1y} (x|y=2)$$

• The conditional PMF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• The conditional PMF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• $0 \leq f_{X|Y}(x|y) \leq 1$

• The conditional PMF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- $0 \leq f_{X|Y}(x|y) \leq 1$
- $\sum_{x} f_{X|Y}(X=x|Y=y) =?$

• The conditional PMF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- $0 \leq f_{X|Y}(x|y) \leq 1$
- $\sum_{x} f_{X|Y}(X=x|Y=y) =?$ <u>1</u>
- $\sum_{y} f_{X|Y}(X = x|Y = y) =?$

	$f_{X Y}(x y)$	\downarrow	Safety Meas	sure (Y)	$\sum_{y} f_{X Y}(x y)$
	Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
-)	None (0)-	0.1625	0.2143	0.2400	0.6168
	Minor (1)	- 0.4375	0.4571	0.4600	1.3546
	Major (2)	0.3375	0.2857	0.2600	0.8832
	Death (3)	0.0625	0.0429	0.0400	0.1454
	$\sum_{x} f_{X Y}(x y)$	1	1	1	

$f_{Y X}(y x)$		Safety Measure (Y)		
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
None (0)	0.325	0.375	0.300	1
Minor (1)	0.3889	0.3556	0.2556	1
Major (2)	0.450	0.3333	0.2167	1
Death (3)	0.500	0.300	0.200	1
$\sum_{x} f_{X Y}(x y)$	1.164	1.364	0.972	

	Safety Measure (Y)			
None (0)	Belt Only (1)	Belt and Harness (2)		
0.325	0.375	0.300	1	
0.3889	0.3556	0.2556	1	
0.450	0.3333	0.2167	1	
0.500	0.300	0.200	1	
1.164	1.364	0.972 X		
	None (0) 0.325 0.3889 0.450 0.500 1.164	Safety Meas None (0) Belt Only (1) 0.325 0.375 0.3889 0.3556 0.450 0.3333 0.500 0.300 1.164 1.364	Safety Measure (Y) None (0) Belt Only (1) Belt and Harness (2) 0.325 0.375 0.300 0.3889 0.3556 0.2556 0.450 0.3333 0.2167 0.500 0.300 0.200 1.164 1.364 0.972	

 $f_{X|Y}(x|y) \neq f_{Y|X}(y|x)$

Joint to ...

f(x,y)		Safety Measure (Y)			
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)	0.065	0.075	0.060		
Minor (1)	0.175	0.160	0.115		
Major (2)	0.135	0.100	0.065		
Death (3)	0.025	0.015	0.010		

Joint to Y	>0(X:+1	X+N N >	>0 x	N >(-1,00)	
Λ.	1			λ>0	
	f(x,y)		Safety Meas	sure (Y)	
	Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
	None (0)	0.065	0.075	0.060	
	Minor (1)	0.175	0.160	0.115	
	Major (2)	0.135	0.100	0.065	
	Death (3)	0.025	0.015	0.010	

.

Given the above table we can get $f_X(x),\,f_Y(y),\,f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$

f(x,y)		Safety Meas	sure (Y)	$\int f_X(x)$
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
None (0)	a	a ₂	az	0.200
Minor (1)	هر	ag-	مړ	0.450
Major (2)	az	A.	α_{e}	0.300
Death (3)	910	CY,	ap2	0.050
$f_Y(y)$	0.400	0.350	0.250	1.000
			0.11	& Vouridb)
T.	+ ay + a	2 + 40 = 1	U 1	# Eg" 7

. . .

	Safety Meas	sure (Y)	$\int f_X(x)$
None (0)	Belt Only (1)	Belt and Harness (2)	
			0.200
			0.450
			0.300
			0.050
0.400	0.350	0.250	1.000
	None (0)	Safety Meas None (0) Belt Only (1)	Safety Measure (Y)None (0)Belt Only (1)Belt and Harness (2)0.4000.3500.250

f(x,y)		Safety Meas	sure (Y)	$\int f_X(x)$
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)	
None (0)	0'Y×0.2			0.200
Minor (1)				0.450
Major (2)				0.300
Death (3)				0.050
$f_Y(y)$	0.400	0.350	0.250	1.000

- Can you get f(x, y)?
- What if X and Y are independent?

• (

•

f(x,y)	Safety Measure (Y) $f_X(x)$			Safety Measure (Y)	
Injury (X)	None (0)	Belt Only (1)	Belt and Harness (2)		
None (0)				0.200	
Minor (1)				0.450	
Major (2)				0.300	
Death (3)				0.050	
$f_Y(y)$	0.400	0.350	0.250	1.000	
an you get f	(x,y)?		frank - fran (2(4)	
hat if X and	Y are inde	pendent?	YIX - (CININ)		

• What if you know $f_{X|Y}(x|y)$?

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$X = \begin{cases} 10^{-4}Y, & \text{with probability } \frac{1}{2}\\ 10^{-3}Y, & \text{with probability } \frac{1}{3}\\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

Conditional Distribution $F(x|y = 10^4) = 5^{-1}$

Consider two random variables X and Y defined as follows:

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$\int 10^{-4}Y$$
, with probability $\frac{1}{2}$

112

113 116

×

10

10

_1

10

01

b

$$X = \begin{cases} 10^{-3}Y, & \text{with probability } \frac{1}{3} \\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

Find
$$f_{X,Y}(x,y)$$
 $f(X | Y = 10^2) = \begin{cases} 1\overline{b}^2 & 1/2 \\ 1\overline{b}' & 1/3 \\ 1 & 1/6 \end{cases}$

ເກັ

10

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$X = \begin{cases} 10^{-4}Y, & \text{with probability } \frac{1}{2}\\ 10^{-3}Y, & \text{with probability } \frac{1}{3}\\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$X = \begin{cases} 10^{-4}Y, & \text{with probability } \frac{1}{2} \\ 10^{-3}Y, & \text{with probability } \frac{1}{3} \\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

Find $\Pr(X > 1 | Y = 10^4) = \sum_{\mathcal{H} > 1} f_{\mathcal{H}} \left(\mathcal{H} \mid \mathcal{Y} = 10^4 \right)$
$$= \int_{\mathcal{H} > 1} f_{\mathcal{H}} \left(\mathcal{H} \mid \mathcal{Y} = 10^4 \right) + \int_{\mathcal{H} > 1} \left(\mathcal{H} \mid 100 \right) \mathcal{H}_{10} \left(\mathcal{H} \mid 10$$

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$X = \begin{cases} 10^{-4}Y, & \text{with probability } \frac{1}{2}\\ 10^{-3}Y, & \text{with probability } \frac{1}{3}\\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

Consider two random variables X and Y defined as follows:

YE \$10, 1014

$$Y = \begin{cases} 10^2, & \text{with probability } \frac{5}{6} \\ 10^4, & \text{with probability } \frac{1}{6} \end{cases}$$

$$X = \begin{cases} 10^{-4}Y, & \text{with probability } \frac{1}{2}\\ 10^{-3}Y, & \text{with probability } \frac{1}{3}\\ 10^{-2}Y, & \text{with probability } \frac{1}{6} \end{cases}$$

= $\sum P[X > 1, Y = 4)$

Find Pr(X > 1)

• $\Pr(X \in A | Y = y) = \sum_{x \in A} f_{X|Y}(x|y)$

- $\Pr(X \in A | Y = y) = \sum_{x \in A} f_{X|Y}(x|y)$
- Total Probability $Pr(X \in A)$?

- $\Pr(X \in A | Y = y) = \sum_{x \in A} f_{X|Y}(x|y)$
- Total Probability $Pr(X \in A)$?

- $\Pr(X \in A | Y = y) = \sum_{x \in A} f_{X|Y}(x|y) \longleftarrow$ Eq. 1
- Total Probability $Pr(X \in A)$?

$$Pr(X \in A) = \sum_{Y=y} Pr(X \in A, Y = y)$$

= $\sum_{Y=y} Pr(X \in A | Y = y) f_Y(y)$ Using Eq. 1
= $\sum_{X \in A} \sum_{Y=y} f_{X|Y}(x|y) f_Y(y)$

Example

f(X, Y)	1	2	3	4
1	1/20	1/20	1/20	0
2	1/20	2/20	3/20	1/20
3	1/20	2/20	3/20	1/20
4	0	1/20	1/20	1/20

Example

 \boldsymbol{X} is a continuous random variable

• $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

 \boldsymbol{X} is a continuous random variable

- $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$
- $\Pr[X \in A | Y = y] = \int_{x \in A} f_{X|Y}(x|y) dx$

 \boldsymbol{X} is a continuous random variable

- $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$
- $\Pr[X \in A | Y = y] = \int_{x \in A} f_{X|Y}(x|y) dx$
- $\Pr[X \in A] = ?$

$$= \int_{y} \int_{x \in A} f_{X|y}(x|y) dx = \int_{y} f_{y}(y) dy$$

$$= \int_{y} \int_{x \in A} f_{X|y}(x|y) dx f_{y}(y) dy$$

Let X be a random bit such that

$$X = \begin{cases} +1, & \text{with probability } \frac{1}{2} \\ -1, & \text{with probability } \frac{1}{2} \end{cases}$$

Let X be a random bit such that

$$X = \begin{cases} +1, & \text{with probability } \frac{1}{2} \\ -1, & \text{with probability } \frac{1}{2} \end{cases}$$

Suppose that X is transmitted over a noisy channel so that the observed signal is

$$Y = \underline{X} + \underline{N},$$

Let X be a random bit such that

$$X = \begin{cases} +1, & \text{with probability } \frac{1}{2} \\ -1, & \text{with probability } \frac{1}{2} \end{cases}$$

Suppose that X is transmitted over a noisy channel so that the observed signal is

$$Y = X + N,$$

where $N \sim \mathcal{N}(0, 1)$ is Gaussian noise, independent of the signal X.

Let X be a random bit such that

$$X = \begin{cases} +1, & \text{with probability } \frac{1}{2} \\ -1, & \text{with probability } \frac{1}{2} \end{cases}$$

Suppose that X is transmitted over a noisy channel so that the observed signal is

 $Y = X + \underline{N},$ where $N \sim \mathcal{N}(0,1)$ is Gaussian noise, independent of the signal X. What is $\Pr(X = +1|Y > 0)$? $p_{X} [\gamma > 0] X = +1] = \int \frac{1}{\sqrt{2\pi}} e^{-\frac{\gamma}{2}} dy$ $\chi + N > 0$ N > -X

$$P_{x}[y > 0] x = +1] = \int_{1}^{\infty} \frac{-y^{2}}{12\pi} e^{-y^{2}/2} dy$$

$$= \int_{-1}^{-1} \int_{1}^{-1} \frac{1}{12\pi} e^{-y^{2}/2} dy$$

$$= \int_{-1}^{-1} \int_{1}^{-1} \frac{1}{12\pi} e^{-y^{2}/2} dy$$

$$= \int_{-\infty}^{-1} \int_{-\infty}^{-1} \frac{1}{12\pi} e^{-y^{2}/2} dy$$

$$= \int_{-\infty}^{-\infty} -\infty$$

$$= \int_{-\infty}^{-\infty} -\frac{1}{2\pi} \left(-\frac{1}{2\pi}\right)$$

$$P_{x}[y > 0][x = -1] = \int_{-\infty}^{-1} -\frac{1}{2\pi} \left(-\frac{1}{2\pi}\right)$$

$$P_{x}[y > 0 | x = -1] = (- \widehat{\Phi}(1))$$

$$P_{x}[x = +1 | y > 0] = \frac{P(x = +1, y > 0)}{P(y > 0)}$$

= P(Y > O(X = +1)P(X = +1) $\varphi(I) + \overline{\varphi}(I) =$ - -

 $\left| b \left(\lambda > o \right) \right|$ $\left(1-\frac{1}{2}(-D)\right)^{1/2}$ $(1 - \Phi(-1)) \frac{1}{2} + (1 - \Phi(1)) \frac{1}{2}$ $(1 - \mathfrak{F}(-1)) \frac{1}{2}$ $1 - \frac{1}{2} \left(\underbrace{\widehat{\Phi}(-1)}_{(-1)} + \underbrace{\widehat{\Phi}(1)}_{(-1)} \right)$

Observing a lump of plutonium-239: Our experiment consists of waiting for an emission, then starting a clock, and recording the length of time X that passes until the next emission. Experience has shown that X has an exponential density with some parameter λ , which depends upon the size of the lump.

Continuous Conditional Distribution $p_{X}[x>a] = \int \lambda e^{\lambda x} = e^{\lambda a}$ $p_{X}[x>s]$

Observing a lump of plutonium-239: Our experiment consists of waiting for an emission, then starting a clock, and recording the length of time X that passes until the next emission. Experience has shown that X has an exponential density with some parameter λ , which depends upon the size of the lump.

Given that you have waited for r seconds with no emission, what is the probability that there is no emission in further s seconds?

$$\frac{[S, N>0]}{P_{R}[X>SHN}[X>N]} = \frac{P_{R}[X>S+N, X>N]}{P_{R}[X>N]}$$

$$= e^{-\lambda[N+S]} / e^{-\lambda N} [e^{-\lambda S}] = P_{R}[X>S+N] P_{R}[X>N]$$

$$= P_{R}[X>N] P_{R}[X>N]$$

$$= P_{R}[X>N] P_{R}[X>N]$$

0

Conditional Probability

When X is independent of Y

$$\underbrace{f_{X|Y}(x|y)}_{f_{Y}(y)} = \frac{f(x,y)}{f_{Y}(y)} \not\leftarrow \\
= \frac{f_{X}(x)f_{Y}(y)}{f_{Y}(y)} \not\leftarrow \\
= f_{X}(x)$$

Conditional Expectation

• Discrete r.v.

$$\mathbb{E}[X \mid Y = y] = \underbrace{\sum_{x} x f_{X|Y}(x \mid y)}_{x \in \mathbb{N}}$$

• Continuous r.v.

$$\mathbb{E}[X \mid Y = y] = \int_{x} x f_{X|Y}(x \mid y)$$

$$\begin{array}{rcl} \chi & & & & \\ & & & & \\ & & & & \\ & & & \\ \chi & & & \\ & & \\ & & & \\ \end{array} \begin{array}{rcl} \chi & & & \\ \chi & & \\ \chi & & \\ \chi & & \\ \end{array} \begin{array}{rcl} \chi & & & \\ \chi & & \\ \chi$$

 $E[Y] = E[E[Y|X]] = E_X[\frac{x}{a}]$ $\varepsilon[y]x] = \frac{x}{a} = \int \frac{x}{a} dx$ $-\frac{\chi^2}{4}=\frac{1}{4}$

 $E[X] = \int x'' f_{X}(x) dx$ $= \int \underline{x} \left[\int f_{x|y}(x|y) f_{y}(y) dy \right] dx$ $\varepsilon \left[\varepsilon \left[\frac{x}{y} \right] \right] = \varepsilon \left[x \right]$ $\int f(x,y) dy = f_x(x)$ $= \left(\int x f_{x/y}(x/y) dx \right) f_{y/y} dy$ $\int_{y} \tilde{E}[X|Y] \tilde{S}_{Y}|y dy = E_{Y}[\tilde{E}[X|Y]]$

A stick of length one is broken at a random point, uniformly distributed over the stick. The remaining piece is broken once more.

- <u>Find the expected length of the piece that now remains given the length of first piece</u>
- Find the expected length of the piece

Law of Total Expectation

$$\mathbb{E}[X] = ?$$

• $X \sim \mathcal{N}(\mu, \sigma^2)$

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- $Y|X \sim \mathcal{N}(X, X^2)$

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- $Y|X \sim \mathcal{N}(X, X^2)$

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- $Y|X \sim \mathcal{N}(X, X^2)$

Find $\mathbb{E}[Y]$