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References

• PCA Explained

• PCA Vizualization

• WLLN and CLT

• WLLN and CLT 2
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https://youtu.be/S51bTyIwxFs
https://setosa.io/ev/principal-component-analysis/
https://www3.nd.edu/~dgalvin1/30530/30530_F13/wlln.pdf
https://www.probabilitycourse.com/chapter7/7_1_1_law_of_large_numbers.php


Iris Data
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Iris Data (1D)

Sepal length: X1
(Random Variable)
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Iris Data (2D)

X1
: Sepal length, X2

: Sepal width
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Iris Data (3D)
X1

: Sepal length, X2
: Sepal width, X3

: Petal length
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Iris Data (4D)

Sepal Length Sepal Width Petal Length Petal Width

X1 X2 X3 X4

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

5 5.4 3.9 1.7 0.4

How would you visualize it in 2D?
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Images
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Image Data as a Random Vector

• Are all the features useful?

• How to capture important information?
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Data

X1 X2

0.41709128 5.0

0.04221766 5.0

0.38424179 5.0

0.90469106 5.0

0.60924091 5.0

0.58330889 5.0

0.56814491 5.0

0.68974537 5.0

0.23745621 5.0

0.70578727 5.0
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Data

“Manifold”
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Data
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Projecting Data
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Projecting Data

→X · v ↑ X̄.v→2 = →(X ↑ X̄) · v→2
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Principal Component

Find the direction v which maximizes variance in the data?
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Principal Components

Principal components are the directions which capture the maximum variance of the

data

• Data is d-dimensional

• Will need at most d directions to capture entire variance

• Top k directions that preserve the maximum variance are the principal components
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Covariance Matrix

X =





x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44
x51 x52 x53 x54





Cov(x1, x2) = 1
5 ∑5

i=1(xi1 ↑ µ1)(xi2 ↑ µ2)

1
N
(X ↑ µ)T(X ↑ µ) =

1
N

X̄TX̄

=
1
N





x̄T
1 x̄1 x̄T

1 x̄2 x̄T
1 x̄3 x̄T

1 x̄4
.
.
.

.

.

.

x̄T
5 x̄1 x̄T

5 x̄2 x̄T
5 x̄3 x̄T

5 x̄4
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Covariance Matrix

Assume X̄, n ↓ d is mean normalized

• What can you say about X̄TX̄?

↭ Square (d ↓ d)
↭ Symmetric (X̄TX̄)T = X̄T(X̄T)T = X̄TX̄
↭ X̄TX̄ is positive semi-definite so non-negative eigen values

↭ Since symmetric one can chose eigen vectors to be orthonormal

V =



 v1 v2 . . . vd
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Principal Component Analysis

The direction which preserves the most variance is,

• Eigen vector of covariance matrix with largest eigen value

X̄TX̄v1 = λ1v1

• Variance preserved is equal to the eigen value

• d ↓ d matrix can have atmost d eigen vectors

• Total variance is ∑d
i=1 λi

• Project data onto the top k eigen vectors yields the “most informative”

k-dimensional data

19 / 30



Principal Component Analysis

The direction which preserves the most variance is,

• Eigen vector of covariance matrix with largest eigen value

X̄TX̄v1 = λ1v1

• Variance preserved is equal to the eigen value

• d ↓ d matrix can have atmost d eigen vectors

• Total variance is ∑d
i=1 λi

• Project data onto the top k eigen vectors yields the “most informative”

k-dimensional data

19 / 30



Principal Component Analysis

The direction which preserves the most variance is,

• Eigen vector of covariance matrix with largest eigen value

X̄TX̄v1 = λ1v1

• Variance preserved is equal to the eigen value

• d ↓ d matrix can have atmost d eigen vectors

• Total variance is ∑d
i=1 λi

• Project data onto the top k eigen vectors yields the “most informative”

k-dimensional data

19 / 30



Principal Component Analysis

The direction which preserves the most variance is,

• Eigen vector of covariance matrix with largest eigen value

X̄TX̄v1 = λ1v1

• Variance preserved is equal to the eigen value

• d ↓ d matrix can have atmost d eigen vectors

• Total variance is ∑d
i=1 λi

• Project data onto the top k eigen vectors yields the “most informative”

k-dimensional data

19 / 30



Principal Component Analysis

The direction which preserves the most variance is,

• Eigen vector of covariance matrix with largest eigen value

X̄TX̄v1 = λ1v1

• Variance preserved is equal to the eigen value

• d ↓ d matrix can have atmost d eigen vectors

• Total variance is ∑d
i=1 λi

• Project data onto the top k eigen vectors yields the “most informative”

k-dimensional data

19 / 30



PCA Algorithm

• Data Compression

• Data Visualization

• Data Denoising
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PCA Algorithm

Algorithm Principal Component Analysis (PCA)

Require: Data matrix X ↔ Rn↓d
with n samples and d features, number of components

k
Ensure: Top k principal components

1: Center the data:

Let µ =
1
n

n

∑
i=1

Xi, X̃ = X ↑ µ

2: Compute the covariance matrix:

C =
1
n

X̃↗X̃
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PCA Algorithm

Algorithm Principal Component Analysis (PCA) - Continued

3: Compute the eigenvectors and eigenvalues of C:

Cvi = λivi, i = 1, . . . , d

4: Sort the eigenvectors by decreasing eigenvalues:

λ1 ↘ λ2 ↘ · · · ↘ λd

5: Select the top k eigenvectors:

W = [v1, v2, . . . , vk]
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PCA Algorithm

Algorithm Principal Component Analysis (PCA) - Continued

6: Project the data onto the top k components:

Z = X̃W

7: return Projected data Z and components W

Viz

21 / 30

https://colab.research.google.com/drive/1hOEZjUmx6PBEueJHxPqDdBh82SDtzX8I?usp=sharing
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Implementation of PCA

• Notebook

• Blog
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https://nipunbatra.github.io/psdv-teaching/notebooks/pca.html
https://machinelearningmastery.com/face-recognition-using-principal-component-analysis/


PCA - Failure

PCA may not always work!
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PCA

Applying PCA for classification
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PCA

Applying PCA for Concentric Circles

24 / 30



PCA

Applying PCA for Concentric Circles

24 / 30



PCA

Applying PCA for Concentric Circles

24 / 30



PCA

Applying PCA for Concentric Circles

24 / 30



Mean

Given n samples x1, x2, . . . , xn

• What is the mean?

• What if the samples are Bernoulli draws from p = 0.5?
• What if the samples are from exponential distribution λ = 5?
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Sample Mean

Sample Mean:

X̄ =
1
n

n

∑
i=1

Xi

True Mean: µ
Viz

26 / 30
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Weak Law of Large Numbers

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (i.i.d.)

random variables with finite mean µ = E[Xi] and finite variance σ2 = Var(Xi).

Define

the sample mean as:

Xn =
1
n

n

∑
i=1

Xi

Then, for any ε > 0:

lim
n≃∞

P(|Xn ↑ µ| ↘ ε) = 0
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Weak Law of Large Numbers

Proof?

What is the probability that you get all heads when you toss a fair coin?
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Weak Law of Large Numbers

I estimate the sum of n random real numbers by rounding each to the nearest integer,

and adding the resulting integers. What is the probability that the total error is at

most ±
⇐

n ?
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Central Limit Theorem

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables

with expected value E[Xi] = µ < ∞ and variance 0 < Var(Xi) = σ2 < ∞. Then, as

n ≃ ∞

X̄ ⇒ N
(

µ,
σ2

n

)

Viz
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Central Limit Theorem

I estimate the sum of n random real numbers by rounding each to the nearest integer,

and adding the resulting integers. What is the probability that the total error is at

most ±
⇐

n ?
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