Machine Learning Quiz - Set 1 Total Marks: 18

Instructions:

- Answer all questions clearly and completely.
- Show work for subjective questions.
- Circle the correct option for multiple choice questions.
- MCQ: 7 marks, Subjective: 11 marks

MULTIPLE CHOICE QUESTIONS

1. Given the confusion matrix below for a binary classification problem:

	Predicted 0	Predicted 1
Actual 0	85	15
Actual 1	10	90

What is the precision of the classifier? [3 marks]

- (A) 0.875
- (B) 0.95
- (C) 0.825
- (D) 0.857
- (E) 0.90
- (F) 0.85
- 2. Which of the following best describes the bias-variance tradeoff in machine learning? [2 marks]
- (A) Variance only matters in unsupervised learning
- (B) Bias and variance are independent and don't affect each other
- (C) Reducing bias typically increases variance, and vice versa
- (D) Bias and variance can both be minimized simultaneously without any tradeoff
- (E) High bias models always perform better than high variance models
- 3. In a decision tree, which impurity measure is most commonly used for classification tasks? [2 marks]
- (A) Gini Impurity

- (B) Mean Absolute Error (MAE)
- (C) R-squared
- (D) Cross-entropy
- (E) Pearson correlation
- (F) Mean Squared Error (MSE)

SUBJECTIVE QUESTIONS

4. Analyze the decision tree structure below:

- a) What is the maximum depth of this tree? [1 mark]
- b) Calculate the Gini impurity for a node with class distribution: Class A: 40 samples, Class B: 30 samples, Class C: 10 samples. [3 marks]
- c) Explain why pruning might be beneficial for this tree. [2 marks] [6 marks]

5. Consider the following dataset for linear regression:

Sample	Feature 1	Feature 2	Target
1	1	2	6
2	3	1	7
3	2	3	9
4	4	2	10

a) Calculate the mean squared error (MSE) if the model predicts $\hat{y} = 5.9, 7.1, 8.8, 9.9$ respectively. [3 marks]

b)	If we u	ıse L2	regula	arizatio	n with	$\lambda = 0.05$, write	the	comple	ete loss	s function	n. [2	marks	[5 n	narks]	