NILMTK v0.2: A Non-intrusive Load Monitoring **Toolkit for Large Scale Data Sets**

Jack Kelly¹, Nipun Batra², Oliver Parson³, Haimonti Dutta⁴, William Knottenbelt¹, Alex Rogers³, Amarjeet Singh², Mani Srivastava⁵ ¹Imperial College London, ²IIIT Delhi, ³University of Southampton, ⁴CCLS Columbia, ⁵UCLA nilmtk.github.io

Problems with NILM research

1.Different data sets used by each paper 2.No reference benchmark implementations available 3.Different metrics used by each paper

NILMTK: A toolkit for NILM research

NILMTK offers a complete pipeline from data sets to metrics:

- NILMTK defines a file format (NILMTK-DF) for NILM data
- Multiple dataset converters are included.
- Pipeline includes dataset statistics, preprocessing,
- training, disaggregation and NILM metrics.

Benchmark algorithms

Data set

Load arbitrarily large data sets

Data set statistics

 ON-OFF duration distribution

NILMTK v0.2 data set converters:

1.AMPds v2 2.COMBED **3.GREEND** 4.iAWE 5.REDD **6.UK-DALE** 7.WikiEnergy 8.More coming...

Combinatorial optimisation (CO): Finds combination of appliance states which sum to aggregate power demand

Factorial hidden Markov model (FHMM): extends combinatorial optimisation to consider time dependencies between consecutive samples

George Hart 1985's algorithm

More coming...

 $disaggregator = CO_1d()$ disaggregator.train(training_data)

Performance metrics

- Error in total energy assigned
- Fraction total energy assigned correctly
- Normalised error in assigned power
- RMS error in assigned power
- Confusion matrix
- TP, FP, FN, TN
- Precision, recall
- F-score
- Hamming loss

f_score(predicted_power, ground_truth_power)

- Appliance usage distribution
- Appliance power distribution
- Correlation between sensor streams
- Find appliance contributions
- Percentage energy sub-metered
- Percentage of samples when energy sub-metered greater than threshold

Example results

- Data set FHMM outperforms CO for 2 data sets Uses state durations • CO performs Р comparably to FHMM for 4 data sets
 - State durations add little value

	CO	FHMM
REDD	0.31	0.31
$Smart^*$	0.53	0.61
ecan Street	0.77	0.77
AMPds	0.55	0.71
iAWE	0.73	0.73
UK-DALE	0.38	0.38

F-score