Making energy disaggregation practical

Nipun Batra IIIT Delhi November 1, 2015

Buildings contribute significantly to overall energy consumption

Buildings getting constructed at rapid rate

Dubai 1991

Dubai 2013

Buildings are an attractive target towards sustainability

" cannot measure it, you cannot improve it" - Kelvin

2223242526

Sensor deployments have several challenges*

- Homes are not a power panacea
 Homes have poor connectivity
 Homes are hazardous
 Limited user interaction
 Aesthetics matter
- I.Hnat et al."The hitchhiker's guide to successful residential sensing deployments". Sensys 2010
- 2.Batra et al. ''It's different. Insights into home energy consumption in India''. Buildsys 2013

Non intrusive load monitoring (NILM) or Energy disaggregation

Why NILM can work

Different appliances can have unique "signatures"

Making NILM practical

I.Comparable2.Utility-driven3.Scalable

Making NILM comparable

eEnergy 2014 and Buildsys 2014

What is the best NILM approach?

3 main problems

I: Hard to assess generality

- Previous contributions evaluated only on single dataset
- Non-trivial to set up similar experimental conditions for direct comparison

2: Lack of comparison against same benchmarks

- Newly proposed algorithms rarely compared against same benchmarks
- Lack of "open source" reference algorithms often lead to reimplementation

3: "Inconsistent" disaggregation performance metrics

- Different performance metrics proposed in the past
- Different formulae for same metric, eg. 4+ versions of "energy assigned"

$$Acc = 1 - \frac{\sum_{t=1}^{T} \sum_{i=1}^{n} \left| \hat{y}_{t}^{(i)} - y_{t}^{(i)} \right|}{2 \sum_{t=1}^{T} \bar{y}_{t}}$$
$$\left| \sum_{t} x_{t}^{(n)} - \sum_{t} \mu_{z_{t}^{(n)}}^{(n)} \right| / \sum_{t} x_{t}^{(n)}$$

$$\begin{split} \sqrt{\left(\sum_{t,i} \left\|y_{t}^{(i)} - \hat{y}_{t}^{(i)}\right\|_{2}^{2}\right)} / \left(\sum_{t,i} \left\|y_{t}^{(i)}\right\|_{2}^{2}\right)} \\ MNE(n) &= \frac{\sum_{t=1}^{T} |\theta_{t}^{n} - y_{t}^{n}|}{\sum_{t=1}^{T} \theta_{t}^{n}} \end{split}$$

And NILMTK was born

Open source **NILM toolkit** to enable **easy comparative** analysis of NILM algorithms **across data sets**

NILMTK pipeline

NILMTK-DF: Common data format

10 data sets released

Statistical functions

Suite of commonly used statistical functions

Preprocessing

Train and Disaggregate

Train and Disaggregate

Hart's event detection algorithm

Factorial Hidden Markov Model (FHMM)

Combinatorial Optimisation

Appliance	Off power	On power
Light	0	200
Fridge	0	100

NILMTK impact

- 10+ papers using NILMTK (4 in Buildsys 2015)
- 2 user contributed NILM algorithms
- 3 user contributed NILM data sets
- Best demonstration award at Buildsys 2014

Making NILM utility-driven

Buildsys 2015 and Percom 2016 (under submission)

If you can measure, can you improve?

Does NILM **really** save energy?

Does telling you that HVAC takes 56% save you energy? Lack of specific **actionable insights**

Exploring the value of Energy disaggregation

I. Can disaggregated traces provide actionable insights?

Submetered appliance traces

Exploring the value of Energy disaggregation

2. Do existing NILM techniques provide traces with sufficient fidelity to support feedback?

Disaggregated appliance traces

Feedback methods on Fridge and HVAC

- Both appliances common across homes
- Both appliances contribute heavily to overall energy consumption

Fridge energy modelling

Time

We can break down fridge energy with less than 4% error

13 out of 95 homes can be given feedback based on **usage energy** saving upto 23% fridge energy

17 out of 95 homes can be given feedback on **excess defrost** saving upto 25% fridge energy

HVAC modelling

 Objective
 Learn set point from weather and energy data
 Optimising setpoint can save upto 20-30% HVAC

HVAC feedback

 84% accuracy on giving feedback based on setpoint temperature

Feedback No Feedback Predicted labels

Exploring the value of Energy disaggregation

2. Do existing NILM techniques provide traces with sufficient fidelity to support feedback?

Disaggregated appliance traces
Benchmark NILM algorithms on our data set give accuracy comparable to state-of-the-art

Authors	Year Dataset		#Homes Algorithm		Fridge			HVAC		
					RMSE (W)	Error Energy	% F-score	RMSE (W)	Error Energy%	F-score
Kolter [15]	2012 RE	EDD	6	Additive FHMM	-	62.5 $^{\Delta}$	-	-	-	-
Parson [18]	2012 RE	EDD	6	Difference HMM	83	55	-	-	-	-
Parson [19]	2014 Co	olden^{Ψ}	117	Bayesian HMM		45				
Batra [5]	2014 iA	WE	1	FHMM	-	50	0.8	-	30	0.9
Current work	Da	ata port	240	$\rm CO^{\star}$	85	19	0.65	600	15	0.87
Current work	Da	ata port	240	$FHMM^*$	95	20	0.63	650	18	0.89
Current work	Da	ata port	240	Hart	82	21	0.72	890	23	0.76

Exploring the value of Energy disaggregation

2. Do existing NILM techniques provide traces with sufficient fidelity to support feedback?

Disaggregated appliance traces

NILM algorithms show poor accuracy in identifying homes which can be given feedback based on **usage energy**

NILM algorithms don't identify the defrost state and thus prevent feedback based on defrost energy

Defrost state is hard to detect!

NILM algorithms show poor accuracy in identifying homes needing HVAC setpoint feedback

Take aways

- I. Appliance level data **does** enable actionable energy saving feedback
- 2. Feedback accuracy can be low despite good disaggregation accuracy
- 3. We, the disaggregation community, need to **revisit the metrics** by which we measure progress

Making NILM scalable

IPSN 2016 (under submission)

3 fundamental problems

- Lights (and other low power appliances) show poor disaggregation accuracy. Light are third highest overall in terms of loads
- 2. Current NILM algorithms are often supervised and need careful tuning and model specification.
- 3. Most techniques assume 1 min. or less sampling interval. Existing smart meters sample once every 15 mins.

Can we leverage **big data** to make NILM more scalable?

Is **big data** more valuable than **precise** data?

precise data

- Smart meter
- I min sampling
- Fine tune model per home

big data

 \bigcap A AAA \cap \bigcap \square \bigcap \square \square \square \cap \cap \square \square \bigcap \cap \cap \cap A AAA \cap \cap \square \square \cap \cap \bigcap \cap \cap \bigcap \cap \bigcirc \bigcap \cap \square \square \cap \bigcirc

Large number of
 homes

big data

- Large number of
 homes
- Submeter small subset of homes
- Use **single** reading per month

Similar homes have similar perappliance energy consumption

Approach: Neighbourhood NILM

Features

- Energy consumption:
 - Past 12 months household aggregate
 - Ratios (Min. energy/Max. energy)
- Static household properties: #occupants, Area, #rooms

Neighbourhood NILM comparable or better than best reported NILM accuracy

Neighbourhood NILM significantly accurate in Washing machine, dish washer, dryer- all pain points for traditional NILM

High accuracy of "Oracle" suggests that our approach is promising

Big data more valuable than **precise data** for the problem of energy disaggregation

Conclusions

Making NILM practical in 3 ways:

Comparable- NILMTK Utility-driven-Energy saving feedback Inferring household characteristics Scalable- Neighbourhood NILM

Future work

Neighbourhood NILM with 15 minute meter data

- I. Can we reduce the number of neighbours needed when we use 15 minute meter data
- 2. 15 minute data will present daily patterns, in addition to monthly patterns in current implementation
- 3. Metrics and utilities on 15 minute resolution

Homes "changing" behaviour pose an interesting challenge to Neighbourhood NILM

- I. Balance between "historical" data and recent trends?
- 2. Continue having same neighbours?I. When to "change" the neighbours of a home

Scaling NILM to "similar" commercial buildings/different appliance types

- I. Class of commercial buildings have exact same electrical infrastructure
- Deployment across 10 dairy booths in New Delhi

NILMTK-''The cost of impact is a bug report/feature request a day on Github'':)

28

O Unwatch -

% Fork

60

97

t Unstar

nilmtk / nilmtk

Issues	Pull requests Labels Milestones	Filters -	Q is:issue is	s:open		Ν	lew issue	<>	
	117 Open 🗸 306 Closed		Author -	Labels -	Milestones -	Assignee -	Sort -	()	
	Scoring FHMM prediction #449 opened 5 days ago by knoxm						Ç- 1	11	
	Metadata handling tutorial needed #448 opened 15 days ago by gjwo						Ç 6		
	Interpretation of Hart85 training #447 opened 16 days ago by gjwo								
	Surfacing data from clustering to plot coloured scatter charts in Hart85 #446 opened 19 days ago by gjwo								
	Convert_greend gives error #443 opened 23 days ago by cklemenj								
	Interpretation of Hart_85 disaggregation results #442 opened 25 days ago by gjwo								
	Advice needed on Hart output #438 opened 27 days ago by gjwo						□ 1		
	Missing graphs and timestamp comparison e	rror					6		

Conclusions

Making NILM practical in 3 ways:

Comparable- NILMTK Utility-driven-Energy saving feedback Inferring household characteristics Scalable- Neighbourhood NILM

Other work

I. Insights into home energy consumption in India [Buildsys 2013]

- 2. Inferring household characteristics from NILM [under submission Percom 2016]
- 3. Improving NILM performance using additional data [ICMLA 2013]