Don't Forget random_state!
Many sklearn functions have a random_state parameter:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
model = RandomForestClassifier(
n_estimators=100, random_state=42
)
cross_val_score(model, X, y, cv=5, random_state=42)
from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cross_val_score(model, X, y, cv=kf)