Data Collection for Machine Learning
Week 1- CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar



Part 1: The Motivation

Why do we need to collect data?



Imagine: You Work at Netflix

NETFLIX — Your Boss: "We have $500M budget for movie acquisitions. Which movies should we license?"

The Question: Can we predict which movies will succeed?

Your Role: Data Scientist

Your Mission: Build a model to predict movie success



The Problem Statement

Goal: Predict box office revenue based on movie attributes

(Movie Features ML Model Predlctedj

(Black Box) Revenue

But wait... What features? What data? Where does it come from?



What We Need: The Target Dataset

Inception 2010 Sci-Fi $160M $836M C. Nolan  DiCaprio
Avatar 2009 Action $237M $2.9B 7.9 Cameron  Worthington
The Room 2003 Drama $6M $1.9M 3.9 Wiseau Wiseau

We need 10,000+ movies with complete information.

Question: Where does this data come from?



The Reality Check

This data doesn't exist in one place

No single CSV file with everything

Can't just "download" the dataset

We must BUILD the dataset ourselves

This is the real world of data science.



The ML Pipeline Reality

1 Modeling (20%)

The uncomfortable truth:

 80% of ML work is data engineering
* Models are the easy part

e Garbage In = Garbage Out



Why Is Data Collection So Hard?

The Data Collection Paradox: The data you need rarely exists in the form you need it.

Scattered sources IMDb, Box Office Mojo, Rotten Tomatoes
Different formats JSON, HTML, CSV
Missing values Budget missing for 40% of movies

Inconsistent naming  "The Dark Knight" vs "Dark Knight, The"

Rate limits Only 100 requests/day


https://www.imdb.com/
https://www.boxofficemojo.com/
https://www.rottentomatoes.com/

Today's Mission

By the end of this lecture, you will know how to:

N OO o B~ W N P

. Find data sources for any project

. Understand how the web works (HTTP)

. Use Chrome DevTools to inspect network traffic
. Make requests using curl from the command line
. Write Python scripts with the requests library

. Handle different data formats

. Scrape websites when APIs don't exist



Part 2: Where Does Data Come From?

Finding the right sources

10



Three Ways to Get Data

OPTION 1

OPTION 2

OPTION 3

d . L. R\
Existing /- N .
Datasets APls Web Scraping

Kaagle UC] OMDb, TMDb, IMDb, Rotten
Sy ' \_ Twitter, etc. ) Tomatoes, etc.

\HugglngFace/

Download Programmatic Parse HTML
directly requests from pages

1



Option 1: Pre-built Datasets

Where to find them:

Kaggle Movies, Titanic, Housing Ready to use, competitions @ May be outdated
UCI ML Repository Classic ML datasets Well-documented Academic focus
HuggingFace NLP datasets, models Easy loading Specialized
Government Portals  Census, economic data Authoritative Limited scope

Verdict: Great starting point, but often not enough for real projects.

12



Option 2: APIs (Application Programming Interface)

Your Code HTTP Request API| Server

(Client) < JSON Response _ _ (OMDDb)

APls = Structured way to request data from servers

Examples for our Netflix project:

« OMDb API: Movie metadata (title, year, ratings)
e TMDb API: Detailed movie info, cast, crew

 Box Office Mojo: Revenue data

13



Option 3: Web Scraping

When APIs don't exist or don't have what you need:

Your Code
(Client)

Website
(IMDb)

HTTP Request
HTML Page

Parse HTML

Extracted
Data

When to scrape: Reviews, prices, content not in APlIs.

14



Our Strategy for Netflix Project

Movie titles, years OMDb API API calls
Ratings, genres OMDb API API calls
Budget, revenue TMDb API API calls
User reviews IMDb website Scraping
Critic reviews Rotten Tomatoes  Scraping

Today's focus: Learn both API calls and scraping.

S



Decision Tree: How to Get Data

Ask these questions in order:

1. Does a ready-made dataset exist?

— YES: Download it (Kaggle, HuggingFace)
— NO: Continue to step 2...

2. Does an official API exist?

— YES: Is it free/affordable? —. Use the API
— NO: Continue to step 3...

16



Decision Tree (continued)

3. Can you scrape the website?
- Check robots.txt and ToS first
-~ YES: Scrape ethically
- NO: Look for alternatives

4. None of the above?
- Manual data collection
- Partner with data owner
— Reframe the problem

Most real projects use a combination of all methods!

17



Part 3: Whatis an API?

The contract between programs

18



API: A Restaurant Analogy

You order Waiter request Kitchen
(Client) (API) (Server)

food response

oo e

Menu Documentation
Order Request
Kitchen Server

Food Response

19



Our Sample Database

§ movies.db - SQLite Database

genre director budget_millions revenue_millions

1 Inception 2010  Sci-Fi Christopher Nolan 8.8 160.0 837.2
2 Avatar 2009 Action  James Cameron 7.9 2370 2923.7
3  The Matrix 1999  Sci-Fi Wachowskis 8.7 63.0 467.2
4  TheDarkKnight 2008 Action ﬁg{:g"pher 90 1850 1006.2

Try it yourself: sqlite3 data/movies.db "SELECT * FROM movies" 20



API: The Formal Definition

API (Application Programming Interface)

A defined set of rules and protocols for building and interacting with software applications.

cursor.execute("SELECT * FROM movies WHERE title = 'Inception'")

requests.get("https://nipun-api-testing.hf.space/items")

APIs provide:

Security (no direct DB access)

Rate limiting (fair usage)

Versioning (backwards compatibility)
21

Documentation (how to use it)



Why Do APIs Exist?

°J

Database

B oflf oo |

Response

o ¢ o © o o o o o o o

APIls are like a bank teller window. You can't walk into the vault, but you can request transactions through a
controlled interface. 22



APIs Provide Protection

Without APIs With APIs

Anyone reads ALL data
Anyone can modify/delete
No tracking

Server overwhelmed

Only expose what you want
Validate every request
Log and monitor usage

Rate limiting protects resources

23



Reading APl Documentation

Before making any API call, check the docs for:

1. Base URL - Where do requests go?
2. Authentication - APl key? Where does it go?
3. Endpoints - What resources are available?

4. Rate limits - How many requests per day?

24



Base URL: https://www.omdbapi.com/

Auth: apikey parameter in URL

Parameters: t (title), i (IMDb ID), y (year)
Rate limit: 1,000 requests/day (free tier)

Get your free API key

25


https://www.omdbapi.com/
https://www.omdbapi.com/apikey.aspx

Types of APIs

REST API HTTP-based, stateless, resource-oriented  OMDDb, GitHub

GraphQL Query language, get exactly what you need = GitHub v4, Shopify
SOAP XML -based, enterprise Legacy banking

WebSocket Real-time, bidirectional Chat apps, live data

For data collection, we focus on REST APIs (most common).

26


https://www.omdbapi.com/
https://docs.github.com/en/rest
https://docs.github.com/en/graphql

REST API: Key Principles

REST = REpresentational State Transfer

1. Stateless: Server doesn't remember previous requests

2. Resource-based: URLs represent things (nouns)

3. HTTP Methods: Standard verbs (GET, POST, PUT, DELETE)
4. Standard formats: JSON or XML responses

Good URL Design:
GET /movies List all movies
GET /movies/123 Get movie with ID 123

POST /movies Create new movie
PUT /movies/123 Update movie 123
DELETE /movies/123 Delete movie 123

27



Anatomy of an API Call

https://api.omdbapi.com/?apikey=abcl23&t=Inception&y=2010
| | | |

Protocol Domain Path Query Parameters
(HTTPS) (server) (endpoint) (key=value pairs)

Query Parameters (after the ?):

 apikey=abcl123 - Authentication
e t=Inception - Movie title

e y=2010 - Year (optional filter)

Multiple parameters joined with &

28



API Authentication

Most APIs require authentication to:

e Track usage
 Enforce rate limits

e Bill customers

Common methods:

GET /movies?apikey=YOUR KEY

GET /movies

X-API-Key: YOUR KEY

GET /movies
Authorization: Bearer YOUR TOKEN




Rate Limiting

Why? Servers have limited resources.

Requests/Day

Free 100
Basic 1,000
Pro 10,000

If you exceed: HTTP 429 (Too Many Requests)

Check headers: X-RateLimit-Remaining: 42

30



Dealing with Rate Limits

Strategy 1: Simple delay

movie movies:
response = requests.get(api url, params={"t": movie})

time.sleep(1)

31



Exponential Backoff

EXPONENTIAL BACKOFF RETRY STRATEGY

RETRY 1 RETRY 2 RETRY 3 RETRY 4 SUCCESS
IZZZ-J m IZZZ-I m )

Too Many Too Many Too Many Too Many
Rafest Requests 429 Requests RSquest Requests RaqiiSel Requests Refiest 20000K
Too
Many...
& >

\ : f TIME
Walt 1s Walt 2s Processing /

Wait 4s Wait 8s Done

The wait time doubles after each failed attempt, reducing server load and increasing the chance of success.

Wait longer after each failure: 1s . 2s - 4s -, 8s - success!

32



Part 4: HTTP Fundamentals

The language of the web

33



What is HTTP?

HTTP = HyperText Transfer Protocol

The foundation of data communication on the web.

HTTP Request
HTTP Response

-
-y am = ™

Server

- -

VN ~

Key characteristics:

o Stateless: Each request is independent
e Text-based: Human-readable (mostly)

e Port 80 (HTTP) or Port 443 (HTTPS)

34



Understanding "Stateless"

The Goldfish Analogy: Server forgets you after every request.

Request 1: "I'm Alice. Show me Inception." - "Here's data."

Request 2: "Now show me Avatar." - "Who are you?"

Why stateless? Scalability - any server can handle any request.

Workaround: Cookies, tokens, session IDs (sent with every request)

B85



The Client-Server Model

The Complete Request Lifecycle

Client Server Database
(Browser) (Backend API)

N : : :

2 1. Open Connection

W memmmm e >

(72} “Let's talk"
! 2. Send Request : |
f > 1 1
I "GET /user/123" I I
: ! l
1 I 1
1 I I
: : 3. Query Data :
1 f » 1
: ! l
1 I 1
: : 4. Return Data :
| 1 -mm=mmmmemeeeeeneeeeeeeeeeeeeeeeeeeeaaa- |
l l l
1 I I
1 I 1
1 I I
: 5. Send Response | :
1< | |
| "200 OK (JSON)" | .
l l l
1 I I
1 I I
1 1 1
1 I 1

[a] .

> 6. Close Connection

W mmmmmm e >

"Done / Timeout"

36



Chrome DevTools: Your HTTP Inspector

Open DevTools: F12 or Cmd+Option+I (Mac)/ Ctrl+Shift+I (Windows)

DevTools lets you see:

e Every HTTP request your browser makes
* Request/response headers and body

e Copy requests as curl commands!

Navigate to the "Network" tab - This is where the magic happens

£/



Try It: Visit

What your browser sends:

/ HTTP/1.1
Host: iitgn.ac.in
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 15 7)...

What server responds:

HTTP/1.1 200 OK

Server: Apache
Content-Type: text/html; charset=UTF-8

38


https://iitgn.ac.in/

Try It: Visit

Filter by "Fetch/XHR" to see API calls:

/items HTTP/1.1
Host: nipun-api-testing.hf.space
Accept: */*

Response (JSON):

Right-click - "Copy as cURL" to replay in terminal!

39


https://nipun-api-testing.hf.space/items

URL Anatomy

https://api.omdbapi.com:443/v1l/movies?t=Inception&y=2010

Protocol Host Port Path Query

Protocol https:// (secure)
Host api.omdbapi.com
Path /vl/movies

Query ?t=Inception&y=2010

40



Key HTTP Headers

Host Which server to contact
User-Agent Identifies your browser/script
Accept What format you want back
Content-Type Format of data you're sending

Authorization Your API key or token

41



HTTP Methods: GET vs POST

Purpose Retrieve data Submit data
Parameters In URL ( ?key=value ) In body

Example Search, fetch details Login, upload, create
Data collection 90% of the time 10% of the time

curl "https://api.example.com/search?g=inception"

curl -X POST https://api.example.com/login -d '{"user":"alice"}"'

42



HTTP Status Codes

Status codes are grouped by category:

(e ooy weng

1xx Informational Request received, processing
2XX Success Request succeeded

3XX Redirection Further action needed

4xX Client Error Your fault

Sxx Server Error Their fault

43



Common Status Codes

eose g

200 OK

201 Created

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

429 Too Many Requests

500 Internal Error

Success
Created
Client error
Auth needed
Denied
Missing
Rate limit

Server crash

Request succeeded
POST created resource
Malformed request
Missing credentials
Not allowed

Resource doesn't exist
Slow down!

Their fault

44



Status Code Intuition

First digit = who's to blame: 2xx = OK, 4xx = your fault, 5xx = their fault

response.status code == 200:
data = response.json()

response.status code == 404:
print(“Not found")

response.status code == 429:
time.sleep(60)

response.status code >= 500:
time.sleep(5)

45



Part 6: Response Formats

Same data, different representations

46



Why Different Formats?

Same movie data can be represented in different formats:

JSON JavaScript Object Notation APIs, Web apps
XML eXtensible Markup Language Enterprise, Legacy
CSv Comma Separated Values Spreadsheets, ML

HTML HyperText Markup Language  Web pages

Protobuf = Protocol Buffers High-performance

Content-Type header tells you the format:

application/json - JSON

application/xml - XML

text/html - HTML

text/csv - CSV 47



Format1: JSON

The most common API format today. Try it live:

curl https://nipun-api-testing.hf.space/format/json

"format": "JSON",

"content type": "application/json",
"data": {"name": "Alice", "age": 30, "city": "Mumbai"}

Pros: Human-readable, lightweight, native to JavaScript
Cons: No schema validation, no comments

48



JSON Data Types

"string": "Hello World",
"number": 42,
"decimal": 3.14159,
"boolean": ,
"null value": ,
“array": [1, 2, 3],
"object": {

"nested": "value"

Only 7 data types: string, number, boolean, null, array, object

Note: No native date type! Dates are typically strings: "2010-07-16"




JSON Gotchas

{"year": "2010"}
int(data["year"])

data["director"]
data.get("director", "Unknown")

50



More JSON Gotchas

data = {"budget": }
data["budget"]:
print("Has budget")

{"rating": ""}
{"rating": }
{}

o1



Format 2: XML

The enterprise standard (still used in SOAP APIs). Try it live:

curl https://nipun-api-testing.hf.space/format/xml

<?xml version="1.0" encoding="UTF-8"7>
< >

>XML</

>

< >Alice</

< >30</ >
>Mumbai</

Pros: Schema validation (XSD), attributes, widespread support
Cons: Verbose, heavier than JSON




JSON vs XML: Same Data

Syntax {"name": "Inception"} <name>Inception</name>
Structure  Curly braces {} Tags <tag></tag>

Size Lighter (~30% smaller) More verbose

Attributes  Not supported Supported

Arrays [1, 2, 3] Repeated elements
Usage Modern APlIs Legacy/Enterprise

SiE;



Format 3: CSV

The data scientist's friend. Try it live:

curl https://nipun-api-testing.hf.space/format/csv

id,name,price,quantity,description
1,Apple,1.50,100,Fresh red apple
2,Banana,0.75,150,Yellow banana
3,0range,2.00,80,Juicy orange

Pros: Opens in Excel, pd.read csv() , very compact
Cons: Flat structure only, no data types, escaping issues

54



Format4: HTML

What you get when scraping websites.

class="movie-card">
<h2 class="title">Inception</h2>
< class="year">2010</ >
<ul class="genres">

<li>Sci-Fi</li>
<li>Action</li>
A
<p class="rating">Rating: 8.8/10</p>

4 >

Not designed for data exchange!

» Mixed with presentation (CSS, layout)
* Need to parse and extract relevant data

e Structure varies by website
55



Format 5: Protocol Buffers (Protobuf)

Google's high-performance binary format.

Movie {
string title = 1;
int32 year = 2;
string genres
float rating = 4;
}

movie pb2 Movie
movie = Movie(title="Inception", year=2010, genres=["Sci-Fi", "Action"], rating=8.8)
binary data = movie.SerializeToString()
print(binary data.hex())

Pros: 10x smaller, 100x faster parsing
Cons: Need schema, binary format, requires tooling




Format Comparison: Same Movie

JSON 150 bytes  High REST APIs
XML 200 bytes Medium Enterprise
CSV 50 bytes High Data exchange
HTML 300 bytes Low Web pages
Protobuf 30 bytes None High-perf APls

For this course: Focus on JSON and HTML

SV



Part 7: Making Requests with curl

The command-line HTTP client

58



What is curl?

curl = "Client URL" - a command-line tool for transferring data.

curl "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]"

Why learn curl?

Universal (works everywhere)

Quick debugging

Foundation for understanding HTTP

Copy from DevTools, paste and run

59



curl: Basic Syntax

curl [options] [URL]

Common options:

-X HTTP method -X POST

-H Add header -H "Accept: application/json"
-d Send data (body) -d '{"key": "value"}'

-0 Output to file -0 movie.json

-1 Headers only -I

Y Verbose output Y

-S Silent mode -S

60



curl: GET Request

curl https://nipun-api-testing.hf.space/hello

curl https://nipun-api-testing.hf.space/items

curl "https://nipun-api-testing.hf.space/greet?name=Alice"

Important: Quote URLs with ? or & (prevents shell interpretation)

61



curl: Real APl Example (OMDDb)

For actual movie data, use OMDb API (free tier: 1000 requests/day)

curl "https://www.omdbapi.com/?t=Inception&apikey=YOUR KEY"

"Title": "Inception", "Year": "2010", "Rated": "PG-13",
"Genre": "Action, Adventure, Sci-Fi",

"Director": "Christopher Nolan",

"imdbRating": "8.8", "imdbID": "tt1375666"

Get your free key: https://www.omdbapi.com/apikey.aspx

62


https://www.omdbapi.com/apikey.aspx

curl: Adding Headers

curl "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]" \
-H "Accept: application/json" \
-H "Authorization: Bearer YOUR TOKEN" \
-H "User-Agent: MyApp/1l.0"

Common headers to add:

e Accept: application/json - Request JSON response
e Authorization: Bearer TOKEN - Authentication

e Content-Type: application/json - When sending JSON

63



curl: Viewing Response Headers

curl -I "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]"

Output:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 1024

Cache-Control: public, max-age=86400
X-RateLimit-Remaining: 999

64



curl: Verbose Mode

curl -v "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]"

Shows everything (request AND response):

GET /7?apikey=demo&t=Inception HTTP/2
Host: api.omdbapi.com

User-Agent: curl/7.79.1

Accept: */*

content-length: 1024

"Title":"Inception"...}

> = What you sent (request)
< = What you received (response)




Pretty Printing with jq

Raw JSON is hard to read. Pipe to jq for formatting:

curl -s https://nipun-api-testing.hf.space/items | jq .

{"items": [{"id": 1, "name": "Apple", ...

66



jq: Extracting and Transforming Data

-s https://nipun-api-testing.hf.space/items | jq '.items'

| jg '.items[0]"
| jg '.items[].name'’

| jq '.items[] | {product: .name, cost: .price}’

More on jg next week!




curl: Saving to File

curl "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]" \
-0 inception.json

curl -s "https://www.omdbapi.com/?t=Inception&apikey=[API KEY]" -0 output.json

curl -s ... | jg . > formatted.json

68



curl: POST Request

curl -X 'POST' \
‘https://nipun-api-testing.hf.space/items' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
“name": "Laptop",
"price": 999.99,
"quantity": 1,
"description": "A powerful laptop"

} 1

Components:

e -X POST - Use POST method

e -H "Content-Type: application/json" - Tell server we're sending JSON

e -d '...' -The data (request body)

69



curl: POST with Form Data

-X POST "https://nipun-api-testing.hf.space/form/contact" \
"Content-Type: application/x-www-form-urlencoded"” \
"name=Alice" \

"email=alice@example.com" \

"“subject=Hello" \

“message=Nice API!"

70



curl: File Upload

curl -X POST "https://nipun-api-testing.hf.space/upload/file" -F "file=@dummy.txt"

-F = multipart form data (for file uploads)
@ = read from file

71



curl: Useful Options

--retry 3 "https://www.omdbapi.com/data"
--max-time 10 "https://www.omdbapi.com/slow"

-L "https://short.url/abc"

-f "https://www.omdbapi.com/notfound"




Part 9: Python requests Library

Programmatic data collection

73



Why Python requests?

curl is great for testing, but for automation you need Python.

pip install requests

Benefits over curl:

Loop over many URLs

Parse JSON automatically

Handle errors gracefully

Store data in variables

Integrate with pandas, ML pipelines

74



requests: Simple GET

requests

response = requests.get(
"https://www.omdbapi.com/",
params={
"apikey": "demo",
"t": "Inception”

print(response.status code)

data = response.json()




requests: Using params

Don't manually build query strings!

url = "https://www.omdbapi.com/?apikey=demo&t=Inception&y=2010"

response = requests.get(
"https://www.omdbapi.com/",
params={
"apikey": "demo",
"t": "Inception",
"y": 2010

Python handles URL encoding automatically!




requests: Adding Headers

requests

response = requests.get(
"https://httpbin.org/headers",
headers={
"Authorization": "Bearer test-token-123",
"Accept": "application/json",
"User-Agent": "MyApp/1.0"

print(response.status code)
print(response.json())




requests: Response Object

requests
response = requests.get("https://nipun-api-testing.hf.space/items")

response.status code
response.headers["Content-Type"]
response.text

response.json()

response.ok

>>> response.json()
{'items': [{'id': 1, 'name': 'Apple', ...}], ‘'count': 3}




requests: POST with JSON

requests

response = requests.post(
"https://nipun-api-testing.hf.space/items",
json={"name": "Laptop", "price": 999.99, "quantity": 1}

)

print(response.status code)

print(response.json())

79



requests: POST with Form Data

response = requests.post(
"https://nipun-api-testing.hf.space/form/contact",
data={"name": "Alice", "email": "alice@example.com", "message": "Hello!"}

)

print(response.json())

Remember:

 json= - sends JSON (Content-Type: application/json)

e data= - sends form data (Content-Type: application/x-www-form-urlencoded)

80



requests: Error Handling

response = requests.get("https://nipun-api-testing.hf.space/items", timeout=10)
response.raise for status()
data = response.json()
requests.exceptions.Timeout:
print("“Request timed out")
requests.exceptions.HTTPError
print(f"HTTP error: {e}")
requests.exceptions.RequestException
print(f"Request failed: {e}")

Key points:

e Always set timeout to avoid hanging forever

e raise for status() converts bad status codes to exceptions

81



requests: Looping Over Multiple ltems

movies = ["Inception", "Avatar", "The Matrix"]
results = []

title movies:
response = requests.get(
"https://www.omdbapi.com/",
params={"apikey": "YOUR KEY", "t": title}, timeout=10

response.ok response.json().get("Response") == "True":

results.append(response.json())

print(f"Got: {title}")
time.sleep(1)

print(f"Collected {len(results)} movies")




requests: Practical Example

fetch movies(titles, api key):
movies = []
title titles:
r = requests.get("https://www.omdbapi.com/",
params={"apikey": api key, "t": title}, timeout=10)
r.ok r.json().get("Response") == "True":
movies.append(r.json())
time.sleep(0.5)
pd.DataFrame(movies)

df = fetch movies(["Inception", "Avatar", "The Matrix"], "YOUR KEY")

print(df[["Title", "Year", "Genre", "imdbRating"]])




Data Collection Best Practices

1. Save raw responses - Save the full JSON, not just extracted fields
2. Log everything - Track successes, failures, and why

3. Use checkpoints - Resume after crashes

4. Handle edge cases - Missing budgets, directors, etc.

5. Validate as you go - Check data types early

Why? Don't re-collect 10,000 movies because you missed a field!

84



curl vs requests: Comparison

Automation

Use case Quick testing
Learning Interactive exploration
Looping Bash scripts

JSON parsing  Needs jq
Error handling  Exit codes

DevTools Copy as curl (yes)

Production code
Native Python
Built-in .json()
Exceptions

Convert from curl

Workflow: DevTools - Copy as curl —» Test . Convert to Python

85



Part 10: Web Scraping

When APIs don't exist

86



When to Scrape?

DO scrape when: DON'T scrape when:

* No API available e robots.txt disallows it

* API doesn't have the data you need * Terms of Service prohibit it

* APl is too expensive » Data is behind login (personal data)

* Public information on public e |t would harm the website
websites

87



API vs Scraping Comparison

e s

Reliability Stable Fragile (HTML changes)

Speed Fast Slower

Data Format Structured JSSON  Unstructured HTML

Rate Limits Documented Unknown
Legality Clear TOS Gray area
Maintenance Low High

Rule: Always prefer APls when available.

88



HTML Structure Basics

HTML = Nested elements forming a tree (DOM)

<!DOCTYPE
>

>Movie Database</

class="movie" id="movie-123">

class="title">Inception</h2>
class="year">2010</ p

class="plot">A thief who steals...</p>




The DOM Tree

html
/ \
head body
I |
title div.movie
/ | \
h2.title span.year p.plot

I I I
"Inception” "2010" "A thief..."

DOM = Document Object Model
Scraping = Navigating this tree to extract data

90



CSS Selectors: Finding Elements

div Element type <div>...</div>
.movie Class nhame <div class="movie">
#main Element ID <div id="main">
div.movie Tag with class <div class="movie">
.movie .title Nested element .title inside .movie
alhref="/movies"] Attribute value <a href="/movies">

ol



BeautifulSoup: Setup

pip install beautifulsoup4 requests

url = "https://nipunbatra.github.io/stt-ai-teaching/html/sample-movie-website.html"
response = requests.get(url)
html = response.text

soup = BeautifulSoup(html, 'html.parser')

print(soup.title.string)




BeautifulSoup: Finding Elements

html = """

<div class="movie">
<h2 class="title">Inception</h2>
<span class="year">2010</span>
<span class="rating">8.8</span>

</div>

soup = BeautifulSoup(html, 'html.parser')

title = soup.find('h2', class ='title")
print(title.text)

all movies = soup.find all('div', class ='movie')




BeautifulSoup: CSS Selectors

soup = BeautifulSoup(html, 'html.parser')

title = soup.select one('.movie .title')
print(title.text)

all titles = soup.select('.movie .title')
t all titles:
print(t.text)

links = soup.select('a[href”="/movies/"]")
link links:
print(link.get('href'))




BeautifulSoup: Extracting Data

element = soup.select one('.title")
print(element.text)
print(element.get text())
print(element.get text(strip=

link = soup.select one('a')
print(link.get('href'))
print(link['href'])
print(link.attrs)




Scraping Example: Movie List

url = "https://nipunbatra.github.io/stt-ai-teaching/html/sample-movie-website.html"
response = requests.get(url)

soup = BeautifulSoup(response.text, 'html.parser')

movies = []

card soup.select('.movie-card'):

movie = {
‘title': card.select one('.title").text.strip(),
‘year': card.select one('.year').text.strip(),

‘genre': card.select one('.genre').text.strip(),
‘rating': card.select one('.rating').text.strip(),
‘plot': card.select one('.plot').text.strip()

}

movies.append(movie)




Scraping Ethics & Best Practices

headers = {'User-Agent': 'MyBot/1.0 (contact@example.com)'}

url urls:
response = requests.get(url, headers=headers)
time.sleep(1)

Rules:

1. Check robots.txt first

2. Add delays between requests

3. Identify yourself (User-Agent)

4. Cache responses when possible

5. Respect rate limits

97



Common Scraping Mistakes

No delays Add time.sleep(1)

Hardcoded selectors ~ Handle missing elements
No error handling Wrap in try/except
Ignoring encoding Check response.encoding

Not saving raw HTML  Save before parsing

98



Defensive Scraping Pattern

title = card.select one('.title")

movie['title'] = title.text.strip() title "Unknown"
Exception e:

logging.error(f"Failed to parse: {url}, error: {e}")

Always handle missing elements gracefully!

99



Checking robots.txt - Real Examples

curl https://www.google.com/robots.txt

User-agent: *

Disallow: /search # Can't scrape search results
Allow: /search/about # But info pages are OK
Disallow: /7 # No query parameters

curl https://www.amazon.com/robots.txt

User-agent: *

Disallow: /gp/cart # No shopping carts
Disallow: /gp/sign-in # No login pages
Disallow: /gp/yourstore # No personalized pages

Always check before scraping!




Part 11: Putting It All Together

Back to our Netflix mission

101



Remember Our Goal?

Build a dataset for movie success prediction:
? ? ? ? ? ? ?

We now have the tools!

DevTools to find APIs

curl to test requests

requests to automate collection

BeautifulSoup for scraping

102



Our Data Collection Pipeline
OMDb API Collect Store
(requests) Metadata as JSON
i

Scrape
Reviews

IMDb Page
(BeautifulSoup)

Final CSV
for ML

103



Step 1: Collect from API

API KEY = "your omdb key"

movies to fetch = ["Inception", "Avatar", "The Matrix"]
results = []

title movies to fetch:

response = requests.get(
"https://www.omdbapi.com/",
params={"apikey": API KEY, "“t": title},
timeout=10

response.ok:
data = response.json()

data.get("Response") == "True":
results.append(data)
print(f"Fetched: {title}")




Step 2: Extract Relevant Fields

movies

data results:

movie = {
"title": data.get("Title"),
"year": data.get("Year"),
"genre": data.get("Genre"),
"director": data.get("Director"),
"rating": data.get("imdbRating"),
"votes": data.get("imdbVotes"),
"runtime": data.get("Runtime"),

"imdb id": data.get("imdbID")

}

movies.append(movie)




Step 3: Save to CSV

pandas pd
df = pd.DataFrame(movies)

df['year'] = pd.to numeric(df['year'], errors='coerce')
df['rating'] = pd.to numeric(df['rating'], errors='coerce')
df['votes'] = df['votes'].str.replace(',', '').astype(float)

df.to csv('netflix movie data.csv', index=

print(df.head())




The Result

title genre director rating
Inception Action, Adventure... Christopher Nolan 8.8
Avatar Action, Adventure... James Cameron 7.9
The Matrix Action, Sci-Fi Lana Wachowski. .. 8.7

Now ready for ML modeling!

107



What We Learned: Three Tools

Chrome DevTools Discover APls, inspect requests  Network tab, Copy as curl

curl Test requests quickly -X, -H, -d,’

Python requests Automate collection .get() , .post(), .json()

Plus BeautifulSoup for scraping when needed!

108



Part 12: Looking Ahead

Lab preview and next week

109



This Week's Lab

Hands-on Practice:

1. Chrome DevTools - Inspect API calls on real websites
2. curl exercises - Making API requests from terminal

3. OMDb API - Collecting movie metadata

4. Python requests - Building a data collection script

5. BeautifulSoup - Scraping a sample website

Goal: Build a working data collection pipeline.

10



Lab Environment Setup

pip install requests beautifulsoup4 pandas

python -c "import requests; print(‘'Ready!"')"

m



Next Week Preview

Schema validation with Pydantic

Handling missing data

Type conversion and normalization

Data quality checks

Building validation pipelines

The data we collect today needs cleaning tomorrow!

12



LCOAELCENWEVE

1
2
3
4
S
6

. Data collection is 80% of ML work - don't underestimate it

. DevTools reveals hidden APIs - always check before scraping
. curl for quick testing - then convert to Python

. requests for automation - handle loops, errors, storage

. Scraping is plan B - use when APIls don't exist

. Be ethical - respect robots.txt, rate limits, ToS

13



Resources

Documentation:

e curl - Command-line HTTP client
e requests - Python HTTP library
e BeautifulSoup - HTML parsing

Free APIs for Practice:

JSONPlaceholder - Fake REST API
OMDb API - Movie database

Public APls - Curated list

Teaching API - No key needed!

14


https://curl.se/docs/
https://requests.readthedocs.io/
https://beautiful-soup-4.readthedocs.io/
https://jsonplaceholder.typicode.com/
https://www.omdbapi.com/
https://github.com/public-apis/public-apis
https://nipun-api-testing.hf.space/

Questions?

15



Thank You!

See you in the lab!

116



