
1

Data Collection for Machine LearningData Collection for Machine Learning
Week 1 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

Part 1: The MotivationPart 1: The Motivation

Why do we need to collect data?

2

Imagine: You Work at NetflixImagine: You Work at Netflix

NETFLIX — Your Boss: "We have $500M budget for movie acquisitions. Which movies should we license?"

The Question: Can we predict which movies will succeed?

Your Role: Data Scientist

Your Mission: Build a model to predict movie success

3

The Problem StatementThe Problem Statement

Goal: Predict box office revenue based on movie attributes

But wait... What features? What data? Where does it come from?

4

What We Need: The Target DatasetWhat We Need: The Target Dataset

Title Year Genre Budget Revenue Rating Director Cast

Inception 2010 Sci-Fi $160M $836M 8.8 C. Nolan DiCaprio

Avatar 2009 Action $237M $2.9B 7.9 Cameron Worthington

The Room 2003 Drama $6M $1.9M 3.9 Wiseau Wiseau

...

We need 10,000+ movies with complete information.

Question: Where does this data come from?

5

The Reality CheckThe Reality Check

This data doesn't exist in one place

No single CSV file with everything

Can't just "download" the dataset

We must BUILD the dataset ourselves

This is the real world of data science.

6

The ML Pipeline RealityThe ML Pipeline Reality

The uncomfortable truth:

80% of ML work is data engineering

Models are the easy part

Garbage In = Garbage Out

7

Why Is Data Collection So Hard?Why Is Data Collection So Hard?

The Data Collection Paradox: The data you need rarely exists in the form you need it.

Challenge Example

Scattered sources IMDb, Box Office Mojo, Rotten Tomatoes

Different formats JSON, HTML, CSV

Missing values Budget missing for 40% of movies

Inconsistent naming "The Dark Knight" vs "Dark Knight, The"

Rate limits Only 100 requests/day

8

https://www.imdb.com/
https://www.boxofficemojo.com/
https://www.rottentomatoes.com/

Today's MissionToday's Mission

By the end of this lecture, you will know how to:

1. Find data sources for any project

2. Understand how the web works (HTTP)

3. Use Chrome DevTools to inspect network traffic

4. Make requests using curl from the command line

5. Write Python scripts with the requests library

6. Handle different data formats

7. Scrape websites when APIs don't exist

9

Part 2: Where Does Data Come From?Part 2: Where Does Data Come From?

Finding the right sources

10

Three Ways to Get DataThree Ways to Get Data

11

Option 1: Pre-built DatasetsOption 1: Pre-built Datasets

Where to find them:

Source Example Datasets Pros Cons

Kaggle Movies, Titanic, Housing Ready to use, competitions May be outdated

UCI ML Repository Classic ML datasets Well-documented Academic focus

HuggingFace NLP datasets, models Easy loading Specialized

Government Portals Census, economic data Authoritative Limited scope

Verdict: Great starting point, but often not enough for real projects.

12

Option 2: APIs (Application Programming Interface)Option 2: APIs (Application Programming Interface)

APIs = Structured way to request data from servers

Examples for our Netflix project:

OMDb API: Movie metadata (title, year, ratings)

TMDb API: Detailed movie info, cast, crew

Box Office Mojo: Revenue data

13

Option 3: Web ScrapingOption 3: Web Scraping

When APIs don't exist or don't have what you need:

When to scrape: Reviews, prices, content not in APIs.

14

Our Strategy for Netflix ProjectOur Strategy for Netflix Project

Data Needed Source Method

Movie titles, years OMDb API API calls

Ratings, genres OMDb API API calls

Budget, revenue TMDb API API calls

User reviews IMDb website Scraping

Critic reviews Rotten Tomatoes Scraping

Today's focus: Learn both API calls and scraping.

15

Decision Tree: How to Get DataDecision Tree: How to Get Data

Ask these questions in order:

1. Does a ready-made dataset exist?

→ YES: Download it (Kaggle, HuggingFace)

→ NO: Continue to step 2...

2. Does an official API exist?

→ YES: Is it free/affordable? → Use the API

→ NO: Continue to step 3...

16

Decision Tree (continued)Decision Tree (continued)

3. Can you scrape the website?

→ Check robots.txt and ToS first

→ YES: Scrape ethically

→ NO: Look for alternatives

4. None of the above?

→ Manual data collection

→ Partner with data owner

→ Reframe the problem

Most real projects use a combination of all methods!

17

Part 3: What is an API?Part 3: What is an API?

The contract between programs

18

API: A Restaurant AnalogyAPI: A Restaurant Analogy

Restaurant API

Menu Documentation

Order Request

Kitchen Server

Food Response

19

Our Sample DatabaseOur Sample Database

Try it yourself: sqlite3 data/movies.db "SELECT * FROM movies" 20

API: The Formal DefinitionAPI: The Formal Definition

API (Application Programming Interface)

A defined set of rules and protocols for building and interacting with software applications.

Without API (direct database access - dangerous!)

cursor.execute("SELECT * FROM movies WHERE title = 'Inception'")

Returns: (1, 'Inception', 2010, 'Sci-Fi', 'Christopher Nolan', 8.8, 160.0, 836.0)

With API (safe, controlled access)

requests.get("https://nipun-api-testing.hf.space/items")

Returns: {"items": [...], "count": 3}

APIs provide:

Security (no direct DB access)

Rate limiting (fair usage)

Versioning (backwards compatibility)

Documentation (how to use it) 21

Why Do APIs Exist?Why Do APIs Exist?

APIs are like a bank teller window. You can't walk into the vault, but you can request transactions through a

controlled interface. 22

APIs Provide ProtectionAPIs Provide Protection

Without APIs With APIs

Anyone reads ALL data Only expose what you want

Anyone can modify/delete Validate every request

No tracking Log and monitor usage

Server overwhelmed Rate limiting protects resources

23

Reading API DocumentationReading API Documentation

Before making any API call, check the docs for:

1. Base URL - Where do requests go?

2. Authentication - API key? Where does it go?

3. Endpoints - What resources are available?

4. Rate limits - How many requests per day?

24

Example: Example: OMDb APIOMDb API Docs Docs

Base URL: https://www.omdbapi.com/

Auth: apikey parameter in URL

Parameters: t (title), i (IMDb ID), y (year)

Rate limit: 1,000 requests/day (free tier)

Get your free API key

25

https://www.omdbapi.com/
https://www.omdbapi.com/apikey.aspx

Types of APIsTypes of APIs

Type Description Example

REST API HTTP-based, stateless, resource-oriented OMDb, GitHub

GraphQL Query language, get exactly what you need GitHub v4, Shopify

SOAP XML-based, enterprise Legacy banking

WebSocket Real-time, bidirectional Chat apps, live data

For data collection, we focus on REST APIs (most common).

26

https://www.omdbapi.com/
https://docs.github.com/en/rest
https://docs.github.com/en/graphql

REST API: Key PrinciplesREST API: Key Principles

REST = REpresentational State Transfer

1. Stateless: Server doesn't remember previous requests

2. Resource-based: URLs represent things (nouns)

3. HTTP Methods: Standard verbs (GET, POST, PUT, DELETE)

4. Standard formats: JSON or XML responses

Good URL Design:

GET /movies → List all movies

GET /movies/123 → Get movie with ID 123

POST /movies → Create new movie

PUT /movies/123 → Update movie 123

DELETE /movies/123 → Delete movie 123

27

Anatomy of an API CallAnatomy of an API Call

https://api.omdbapi.com/?apikey=abc123&t=Inception&y=2010

└─┬─┘ └──────┬──────┘ └─┬─┘└──────────┬───────────────┘

 │ │ │ │

Protocol Domain Path Query Parameters

(HTTPS) (server) (endpoint) (key=value pairs)

Query Parameters (after the ?):

apikey=abc123 → Authentication

t=Inception → Movie title

y=2010 → Year (optional filter)

Multiple parameters joined with &

28

API AuthenticationAPI Authentication

Most APIs require authentication to:

Track usage

Enforce rate limits

Bill customers

Common methods:

1. API Key in URL (simplest)

GET /movies?apikey=YOUR_KEY

2. API Key in Header

GET /movies

X-API-Key: YOUR_KEY

3. Bearer Token (OAuth)

GET /movies

Authorization: Bearer YOUR_TOKEN

29

Rate LimitingRate Limiting

Why? Servers have limited resources.

Tier Requests/Day

Free 100

Basic 1,000

Pro 10,000

If you exceed: HTTP 429 (Too Many Requests)

Check headers: X-RateLimit-Remaining: 42

30

Dealing with Rate LimitsDealing with Rate Limits

Strategy 1: Simple delay

for movie in movies:

 response = requests.get(api_url, params={"t": movie})

 time.sleep(1) # Wait 1 second between requests

31

Exponential BackoffExponential Backoff

Wait longer after each failure: 1s → 2s → 4s → 8s → success! 32

Part 4: HTTP FundamentalsPart 4: HTTP Fundamentals

The language of the web

33

What is HTTP?What is HTTP?

HTTP = HyperText Transfer Protocol

The foundation of data communication on the web.

Key characteristics:

Stateless: Each request is independent

Text-based: Human-readable (mostly)

Port 80 (HTTP) or Port 443 (HTTPS)

34

Understanding "Stateless"Understanding "Stateless"

The Goldfish Analogy: Server forgets you after every request.

Request 1: "I'm Alice. Show me Inception." → "Here's data."

Request 2: "Now show me Avatar." → "Who are you?"

Why stateless? Scalability - any server can handle any request.

Workaround: Cookies, tokens, session IDs (sent with every request)

35

The Client-Server ModelThe Client-Server Model

The Complete Request Lifecycle

Client
(Browser)

Server
(Backend API)

Database

S
E
TU

P

1. Open Connection

"Let's talk"

2. Send Request

"GET /user/123"

3. Query Data

4. Return Data

5. Send Response

"200 OK (JSON)"

E
N
D 6. Close Connection

"Done / Timeout"

36

Chrome DevTools: Your HTTP InspectorChrome DevTools: Your HTTP Inspector

Open DevTools: F12 or Cmd+Option+I (Mac) / Ctrl+Shift+I (Windows)

DevTools lets you see:

Every HTTP request your browser makes

Request/response headers and body

Copy requests as curl commands!

Navigate to the "Network" tab → This is where the magic happens

37

Try It: Visit Try It: Visit iitgn.ac.iniitgn.ac.in

What your browser sends:

GET / HTTP/1.1

Host: iitgn.ac.in

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...

What server responds:

HTTP/1.1 200 OK

Server: Apache

Content-Type: text/html; charset=UTF-8

38

https://iitgn.ac.in/

Try It: Visit Try It: Visit Teaching APITeaching API

Filter by "Fetch/XHR" to see API calls:

GET /items HTTP/1.1

Host: nipun-api-testing.hf.space

Accept: */*

Response (JSON):

{"items": [{"id": 1, "name": "Apple", "price": 1.5}, ...], "count": 3}

Right-click → "Copy as cURL" to replay in terminal!

39

https://nipun-api-testing.hf.space/items

URL AnatomyURL Anatomy

https://api.omdbapi.com:443/v1/movies?t=Inception&y=2010

└─┬──┘ └──────┬───────┘└┬─┘└───┬───┘└─────────┬────────┘

Protocol Host Port Path Query

Component Example

Protocol https:// (secure)

Host api.omdbapi.com

Path /v1/movies

Query ?t=Inception&y=2010

40

Key HTTP HeadersKey HTTP Headers

Header What it does

Host Which server to contact

User-Agent Identifies your browser/script

Accept What format you want back

Content-Type Format of data you're sending

Authorization Your API key or token

41

HTTP Methods: GET vs POSTHTTP Methods: GET vs POST

GET POST

Purpose Retrieve data Submit data

Parameters In URL (?key=value) In body

Example Search, fetch details Login, upload, create

Data collection 90% of the time 10% of the time

GET - parameters in URL

curl "https://api.example.com/search?q=inception"

POST - data in body

curl -X POST https://api.example.com/login -d '{"user":"alice"}'

42

HTTP Status CodesHTTP Status Codes

Status codes are grouped by category:

Range Category Meaning

1xx Informational Request received, processing

2xx Success Request succeeded

3xx Redirection Further action needed

4xx Client Error Your fault

5xx Server Error Their fault

43

Common Status CodesCommon Status Codes

Code Meaning When

200 OK Success Request succeeded

201 Created Created POST created resource

400 Bad Request Client error Malformed request

401 Unauthorized Auth needed Missing credentials

403 Forbidden Denied Not allowed

404 Not Found Missing Resource doesn't exist

429 Too Many Requests Rate limit Slow down!

500 Internal Error Server crash Their fault

44

Status Code IntuitionStatus Code Intuition

First digit = who's to blame: 2xx = OK, 4xx = your fault, 5xx = their fault

if response.status_code == 200:

 data = response.json() # Success!

elif response.status_code == 404:

 print("Not found") # Bad ID

elif response.status_code == 429:

 time.sleep(60) # Rate limited

elif response.status_code >= 500:

 time.sleep(5) # Server error

45

Part 6: Response FormatsPart 6: Response Formats

Same data, different representations

46

Why Different Formats?Why Different Formats?

Same movie data can be represented in different formats:

Format Full Name Use Case

JSON JavaScript Object Notation APIs, Web apps

XML eXtensible Markup Language Enterprise, Legacy

CSV Comma Separated Values Spreadsheets, ML

HTML HyperText Markup Language Web pages

Protobuf Protocol Buffers High-performance

Content-Type header tells you the format:

application/json → JSON

application/xml → XML

text/html → HTML

text/csv → CSV 47

Format 1: JSONFormat 1: JSON

The most common API format today. Try it live:

curl https://nipun-api-testing.hf.space/format/json

{

 "format": "JSON",

 "content_type": "application/json",

 "data": {"name": "Alice", "age": 30, "city": "Mumbai"}

}

Pros: Human-readable, lightweight, native to JavaScript

Cons: No schema validation, no comments

48

JSON Data TypesJSON Data Types

{

 "string": "Hello World",

 "number": 42,

 "decimal": 3.14159,

 "boolean": true,

 "null_value": null,

 "array": [1, 2, 3],

 "object": {

 "nested": "value"

 }

}

Only 7 data types: string, number, boolean, null, array, object

Note: No native date type! Dates are typically strings: "2010-07-16"

49

JSON GotchasJSON Gotchas

Numbers might be strings!

data = {"year": "2010"} # String, not int!

year = int(data["year"]) # Must convert

Missing keys crash your code

data["director"] # KeyError!

data.get("director", "Unknown") # Safe!

50

More JSON GotchasMore JSON Gotchas

null becomes None in Python

data = {"budget": None}

if data["budget"]: # This is False!

 print("Has budget")

Empty string vs null vs missing

{"rating": ""} # Empty string

{"rating": None} # Null

{} # Missing key

51

Format 2: XMLFormat 2: XML

The enterprise standard (still used in SOAP APIs). Try it live:

curl https://nipun-api-testing.hf.space/format/xml

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <format>XML</format>

 <data>

 <user>

 <name>Alice</name>

 <age>30</age>

 <city>Mumbai</city>

 </user>

 </data>

</response>

Pros: Schema validation (XSD), attributes, widespread support

Cons: Verbose, heavier than JSON

52

JSON vs XML: Same DataJSON vs XML: Same Data

Aspect JSON XML

Syntax {"name": "Inception"} <name>Inception</name>

Structure Curly braces {} Tags <tag></tag>

Size Lighter (~30% smaller) More verbose

Attributes Not supported Supported

Arrays [1, 2, 3] Repeated elements

Usage Modern APIs Legacy/Enterprise

53

Format 3: CSVFormat 3: CSV

The data scientist's friend. Try it live:

curl https://nipun-api-testing.hf.space/format/csv

id,name,price,quantity,description

1,Apple,1.50,100,Fresh red apple

2,Banana,0.75,150,Yellow banana

3,Orange,2.00,80,Juicy orange

Pros: Opens in Excel, pd.read_csv() , very compact

Cons: Flat structure only, no data types, escaping issues

54

Format 4: HTMLFormat 4: HTML

What you get when scraping websites.

<div class="movie-card">

 <h2 class="title">Inception</h2>

 2010

 <ul class="genres">

 Sci-Fi

 Action

 <p class="rating">Rating: 8.8/10</p>

</div>

Not designed for data exchange!

Mixed with presentation (CSS, layout)

Need to parse and extract relevant data

Structure varies by website

55

Format 5: Protocol Buffers (Protobuf)Format 5: Protocol Buffers (Protobuf)

Google's high-performance binary format.

// movie.proto (schema definition)

message Movie {

 string title = 1;

 int32 year = 2;

 repeated string genres = 3;

 float rating = 4;

}

After compiling: protoc --python_out=. movie.proto

from movie_pb2 import Movie

movie = Movie(title="Inception", year=2010, genres=["Sci-Fi", "Action"], rating=8.8)

binary_data = movie.SerializeToString() # Only 25 bytes!

print(binary_data.hex()) # 0a09496e63657074696f6e10da0f...

Pros: 10x smaller, 100x faster parsing

Cons: Need schema, binary format, requires tooling

56

Format Comparison: Same MovieFormat Comparison: Same Movie

Format Size Readability Use Case

JSON 150 bytes High REST APIs

XML 200 bytes Medium Enterprise

CSV 50 bytes High Data exchange

HTML 300 bytes Low Web pages

Protobuf 30 bytes None High-perf APIs

For this course: Focus on JSON and HTML

57

Part 7: Making Requests with curlPart 7: Making Requests with curl

The command-line HTTP client

58

What is curl?What is curl?

curl = "Client URL" - a command-line tool for transferring data.

Your first curl command

curl "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]"

Why learn curl?

Universal (works everywhere)

Quick debugging

Foundation for understanding HTTP

Copy from DevTools, paste and run

59

curl: Basic Syntaxcurl: Basic Syntax

curl [options] [URL]

Common options:

Option Meaning Example

-X HTTP method -X POST

-H Add header -H "Accept: application/json"

-d Send data (body) -d '{"key": "value"}'

-o Output to file -o movie.json

-I Headers only -I

-v Verbose output -v

-s Silent mode -s

60

curl: GET Requestcurl: GET Request

Try these right now! (no API key needed)

curl https://nipun-api-testing.hf.space/hello

{"message": "Hello, World!"}

curl https://nipun-api-testing.hf.space/items

{"items": [{"id": 1, "name": "Apple", ...}], "count": 3}

curl "https://nipun-api-testing.hf.space/greet?name=Alice"

{"greeting": "Hello, Alice!"}

Important: Quote URLs with ? or & (prevents shell interpretation)

61

curl: Real API Example (OMDb)curl: Real API Example (OMDb)

For actual movie data, use OMDb API (free tier: 1000 requests/day)

Get movie by title (requires API key)

curl "https://www.omdbapi.com/?t=Inception&apikey=YOUR_KEY"

{

 "Title": "Inception", "Year": "2010", "Rated": "PG-13",

 "Genre": "Action, Adventure, Sci-Fi",

 "Director": "Christopher Nolan",

 "imdbRating": "8.8", "imdbID": "tt1375666"

}

Get your free key: https://www.omdbapi.com/apikey.aspx

62

https://www.omdbapi.com/apikey.aspx

curl: Adding Headerscurl: Adding Headers

curl "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]" \

 -H "Accept: application/json" \

 -H "Authorization: Bearer YOUR_TOKEN" \

 -H "User-Agent: MyApp/1.0"

Common headers to add:

Accept: application/json - Request JSON response

Authorization: Bearer TOKEN - Authentication

Content-Type: application/json - When sending JSON

63

curl: Viewing Response Headerscurl: Viewing Response Headers

Show only response headers (no body)

curl -I "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]"

Output:

HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8

Content-Length: 1024

Cache-Control: public, max-age=86400

X-RateLimit-Remaining: 999

64

curl: Verbose Modecurl: Verbose Mode

curl -v "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]"

Shows everything (request AND response):

> GET /?apikey=demo&t=Inception HTTP/2

> Host: api.omdbapi.com

> User-Agent: curl/7.79.1

> Accept: */*

>

< content-length: 1024

<

{"Title":"Inception"...}

> = What you sent (request)

< = What you received (response)

65

Pretty Printing with jqPretty Printing with jq

Raw JSON is hard to read. Pipe to jq for formatting:

curl -s https://nipun-api-testing.hf.space/items | jq .

{"items": [{"id": 1, "name": "Apple", ...}, ...], "count": 3}

66

jq: Extracting and Transforming Datajq: Extracting and Transforming Data

Get just the items array

curl -s https://nipun-api-testing.hf.space/items | jq '.items'

Get first item only

curl -s ... | jq '.items[0]'

{"id": 1, "name": "Apple", "price": 1.5, ...}

Get all names

curl -s ... | jq '.items[].name'

"Apple" "Banana" "Orange"

Create new structure

curl -s ... | jq '.items[] | {product: .name, cost: .price}'

More on jq next week!

67

curl: Saving to Filecurl: Saving to File

Save response to file

curl "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]" \

 -o inception.json

Silent mode (no progress bar)

curl -s "https://www.omdbapi.com/?t=Inception&apikey=[API_KEY]" -o output.json

Save with pretty formatting

curl -s ... | jq . > formatted.json

68

curl: POST Requestcurl: POST Request

curl -X 'POST' \

 'https://nipun-api-testing.hf.space/items' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

 "name": "Laptop",

 "price": 999.99,

 "quantity": 1,

 "description": "A powerful laptop"

}'

Components:

-X POST - Use POST method

-H "Content-Type: application/json" - Tell server we're sending JSON

-d '...' - The data (request body)

69

curl: POST with Form Datacurl: POST with Form Data

curl -X POST "https://nipun-api-testing.hf.space/form/contact" \

 -H "Content-Type: application/x-www-form-urlencoded" \

 -d "name=Alice" \

 -d "email=alice@example.com" \

 -d "subject=Hello" \

 -d "message=Nice API!"

70

curl: File Uploadcurl: File Upload

Upload a file

curl -X POST "https://nipun-api-testing.hf.space/upload/file" -F "file=@dummy.txt"

-F = multipart form data (for file uploads)

@ = read from file

71

curl: Useful Optionscurl: Useful Options

Retry on failure

curl --retry 3 "https://www.omdbapi.com/data"

Set timeout (seconds)

curl --max-time 10 "https://www.omdbapi.com/slow"

Follow redirects

curl -L "https://short.url/abc"

Fail silently on HTTP errors

curl -f "https://www.omdbapi.com/notfound"

(exits with error code instead of showing error page)

72

Part 9: Python requests LibraryPart 9: Python requests Library

Programmatic data collection

73

Why Python requests?Why Python requests?

curl is great for testing, but for automation you need Python.

Install

pip install requests

Benefits over curl:

Loop over many URLs

Parse JSON automatically

Handle errors gracefully

Store data in variables

Integrate with pandas, ML pipelines

74

requests: Simple GETrequests: Simple GET

import requests

Make a GET request to OMDb API

response = requests.get(

 "https://www.omdbapi.com/",

 params={

 "apikey": "demo", # replace with your real API key

 "t": "Inception"

 }

)

Check HTTP status code

print(response.status_code) # 200 means OK

Parse JSON response

data = response.json()

75

requests: Using paramsrequests: Using params

Don't manually build query strings!

Bad (manual string building)

url = "https://www.omdbapi.com/?apikey=demo&t=Inception&y=2010"

Good (use params dict)

response = requests.get(

 "https://www.omdbapi.com/",

 params={

 "apikey": "demo",

 "t": "Inception",

 "y": 2010

 }

)

Python handles URL encoding automatically!

76

requests: Adding Headersrequests: Adding Headers

import requests

response = requests.get(

 "https://httpbin.org/headers",

 headers={

 "Authorization": "Bearer test-token-123",

 "Accept": "application/json",

 "User-Agent": "MyApp/1.0"

 }

)

print(response.status_code)

print(response.json())

77

requests: Response Objectrequests: Response Object

import requests

response = requests.get("https://nipun-api-testing.hf.space/items")

response.status_code # 200

response.headers["Content-Type"] # 'application/json'

response.text # Raw text (string)

response.json() # Parsed as Python dict

response.ok # True for 2xx status codes

Example output

>>> response.json()

{'items': [{'id': 1, 'name': 'Apple', ...}], 'count': 3}

78

requests: POST with JSONrequests: POST with JSON

import requests

response = requests.post(

 "https://nipun-api-testing.hf.space/items",

 json={"name": "Laptop", "price": 999.99, "quantity": 1}

)

print(response.status_code) # 201 (Created)

print(response.json()) # {'id': 4, 'name': 'Laptop', ...}

79

requests: POST with Form Datarequests: POST with Form Data

response = requests.post(

 "https://nipun-api-testing.hf.space/form/contact",

 data={"name": "Alice", "email": "alice@example.com", "message": "Hello!"}

)

print(response.json()) # {'status': 'received', 'name': 'Alice', ...}

Remember:

json= → sends JSON (Content-Type: application/json)

data= → sends form data (Content-Type: application/x-www-form-urlencoded)

80

requests: Error Handlingrequests: Error Handling

try:

 response = requests.get("https://nipun-api-testing.hf.space/items", timeout=10)

 response.raise_for_status() # Raises exception for 4xx/5xx

 data = response.json()

except requests.exceptions.Timeout:

 print("Request timed out")

except requests.exceptions.HTTPError as e:

 print(f"HTTP error: {e}")

except requests.exceptions.RequestException as e:

 print(f"Request failed: {e}")

Key points:

Always set timeout to avoid hanging forever

raise_for_status() converts bad status codes to exceptions

81

requests: Looping Over Multiple Itemsrequests: Looping Over Multiple Items

movies = ["Inception", "Avatar", "The Matrix"]

results = []

for title in movies:

 response = requests.get(

 "https://www.omdbapi.com/",

 params={"apikey": "YOUR_KEY", "t": title}, timeout=10

)

 if response.ok and response.json().get("Response") == "True":

 results.append(response.json())

 print(f"Got: {title}")

 time.sleep(1) # Be polite - don't hammer the server

print(f"Collected {len(results)} movies")

82

requests: Practical Examplerequests: Practical Example

def fetch_movies(titles, api_key):

 movies = []

 for title in titles:

 r = requests.get("https://www.omdbapi.com/",

 params={"apikey": api_key, "t": title}, timeout=10)

 if r.ok and r.json().get("Response") == "True":

 movies.append(r.json())

 time.sleep(0.5)

 return pd.DataFrame(movies)

df = fetch_movies(["Inception", "Avatar", "The Matrix"], "YOUR_KEY")

print(df[["Title", "Year", "Genre", "imdbRating"]])

83

Data Collection Best PracticesData Collection Best Practices

1. Save raw responses - Save the full JSON, not just extracted fields

2. Log everything - Track successes, failures, and why

3. Use checkpoints - Resume after crashes

4. Handle edge cases - Missing budgets, directors, etc.

5. Validate as you go - Check data types early

Why? Don't re-collect 10,000 movies because you missed a field!

84

curl vs requests: Comparisoncurl vs requests: Comparison

Aspect curl Python requests

Use case Quick testing Automation

Learning Interactive exploration Production code

Looping Bash scripts Native Python

JSON parsing Needs jq Built-in .json()

Error handling Exit codes Exceptions

DevTools Copy as curl (yes) Convert from curl

Workflow: DevTools → Copy as curl → Test → Convert to Python

85

Part 10: Web ScrapingPart 10: Web Scraping

When APIs don't exist

86

When to Scrape?When to Scrape?

DO scrape when:

No API available

API doesn't have the data you need

API is too expensive

Public information on public

websites

DON'T scrape when:

robots.txt disallows it

Terms of Service prohibit it

Data is behind login (personal data)

It would harm the website

87

API vs Scraping ComparisonAPI vs Scraping Comparison

Aspect API Scraping

Reliability Stable Fragile (HTML changes)

Speed Fast Slower

Data Format Structured JSON Unstructured HTML

Rate Limits Documented Unknown

Legality Clear TOS Gray area

Maintenance Low High

Rule: Always prefer APIs when available.

88

HTML Structure BasicsHTML Structure Basics

HTML = Nested elements forming a tree (DOM)

<!DOCTYPE html>

<html>

 <head>

 <title>Movie Database</title>

 </head>

 <body>

 <div class="movie" id="movie-123">

 <h2 class="title">Inception</h2>

 2010

 <p class="plot">A thief who steals...</p>

 </div>

 </body>

</html>

89

The DOM TreeThe DOM Tree

 html

 / \

 head body

 | |

 title div.movie

 / | \

 h2.title span.year p.plot

 | | |

 "Inception" "2010" "A thief..."

DOM = Document Object Model

Scraping = Navigating this tree to extract data

90

CSS Selectors: Finding ElementsCSS Selectors: Finding Elements

Selector Meaning Example Match

div Element type <div>...</div>

.movie Class name <div class="movie">

#main Element ID <div id="main">

div.movie Tag with class <div class="movie">

.movie .title Nested element .title inside .movie

a[href="/movies"] Attribute value

91

BeautifulSoup: SetupBeautifulSoup: Setup

pip install beautifulsoup4 requests

Fetch the hosted sample movie page

url = "https://nipunbatra.github.io/stt-ai-teaching/html/sample-movie-website.html"

response = requests.get(url)

html = response.text

Parse it

soup = BeautifulSoup(html, 'html.parser')

Now we can search and extract elements

print(soup.title.string) # "My Movie Library"

92

BeautifulSoup: Finding ElementsBeautifulSoup: Finding Elements

html = """

<div class="movie">

 <h2 class="title">Inception</h2>

 2010

 8.8

</div>

"""

soup = BeautifulSoup(html, 'html.parser')

Find single element

title = soup.find('h2', class_='title')

print(title.text) # "Inception"

all_movies = soup.find_all('div', class_='movie') # Find all elements (if multiple movies)

93

BeautifulSoup: CSS SelectorsBeautifulSoup: CSS Selectors

soup = BeautifulSoup(html, 'html.parser')

Select first match

title = soup.select_one('.movie .title')

print(title.text) # "Inception"

Select all matches

all_titles = soup.select('.movie .title')

for t in all_titles:

 print(t.text)

Example: all links starting with "/movies/"

links = soup.select('a[href^="/movies/"]')

for link in links:

 print(link.get('href'))

94

BeautifulSoup: Extracting DataBeautifulSoup: Extracting Data

Get text content

element = soup.select_one('.title')

print(element.text) # "Inception"

print(element.get_text()) # "Inception"

print(element.get_text(strip=True)) # Remove extra whitespace

Get attributes

link = soup.select_one('a')

print(link.get('href')) # "/movies/123"

print(link['href']) # "/movies/123"

print(link.attrs) # {'href': '/movies/123', 'class': ['btn']}

95

Scraping Example: Movie ListScraping Example: Movie List

Scraping Example: Movie List

url = "https://nipunbatra.github.io/stt-ai-teaching/html/sample-movie-website.html"

response = requests.get(url)

soup = BeautifulSoup(response.text, 'html.parser')

movies = []

for card in soup.select('.movie-card'):

 movie = {

 'title': card.select_one('.title').text.strip(),

 'year': card.select_one('.year').text.strip(),

 'genre': card.select_one('.genre').text.strip(),

 'rating': card.select_one('.rating').text.strip(),

 'plot': card.select_one('.plot').text.strip()

 }

 movies.append(movie)

96

Scraping Ethics & Best PracticesScraping Ethics & Best Practices

headers = {'User-Agent': 'MyBot/1.0 (contact@example.com)'}

for url in urls:

 response = requests.get(url, headers=headers)

 time.sleep(1) # Wait between requests

Rules:

1. Check robots.txt first

2. Add delays between requests

3. Identify yourself (User-Agent)

4. Cache responses when possible

5. Respect rate limits

97

Common Scraping MistakesCommon Scraping Mistakes

Mistake Solution

No delays Add time.sleep(1)

Hardcoded selectors Handle missing elements

No error handling Wrap in try/except

Ignoring encoding Check response.encoding

Not saving raw HTML Save before parsing

98

Defensive Scraping PatternDefensive Scraping Pattern

try:

 title = card.select_one('.title')

 movie['title'] = title.text.strip() if title else "Unknown"

except Exception as e:

 logging.error(f"Failed to parse: {url}, error: {e}")

Always handle missing elements gracefully!

99

Checking robots.txt - Real ExamplesChecking robots.txt - Real Examples

curl https://www.google.com/robots.txt

User-agent: *

Disallow: /search # Can't scrape search results

Allow: /search/about # But info pages are OK

Disallow: /? # No query parameters

curl https://www.amazon.com/robots.txt

User-agent: *

Disallow: /gp/cart # No shopping carts

Disallow: /gp/sign-in # No login pages

Disallow: /gp/yourstore # No personalized pages

Always check before scraping!

100

Part 11: Putting It All TogetherPart 11: Putting It All Together

Back to our Netflix mission

101

Remember Our Goal?Remember Our Goal?

Build a dataset for movie success prediction:

Title Year Genre Budget Revenue Rating Director

? ? ? ? ? ? ?

We now have the tools!

DevTools to find APIs

curl to test requests

requests to automate collection

BeautifulSoup for scraping

102

Our Data Collection PipelineOur Data Collection Pipeline

103

Step 1: Collect from APIStep 1: Collect from API

API_KEY = "your_omdb_key" # Replace with your actual OMDb API key

movies_to_fetch = ["Inception", "Avatar", "The Matrix"]

results = []

for title in movies_to_fetch:

 response = requests.get(

 "https://www.omdbapi.com/",

 params={"apikey": API_KEY, "t": title},

 timeout=10 # Prevent hanging requests

)

 if response.ok: # Check HTTP-level success

 data = response.json()

 # Check API-level success

 if data.get("Response") == "True":

 results.append(data)

 print(f"Fetched: {title}")

 else:

104

Step 2: Extract Relevant FieldsStep 2: Extract Relevant Fields

movies = []

for data in results:

 movie = {

 "title": data.get("Title"),

 "year": data.get("Year"),

 "genre": data.get("Genre"),

 "director": data.get("Director"),

 "rating": data.get("imdbRating"),

 "votes": data.get("imdbVotes"),

 "runtime": data.get("Runtime"),

 "imdb_id": data.get("imdbID")

 }

 movies.append(movie)

105

Step 3: Save to CSVStep 3: Save to CSV

import pandas as pd

Convert to DataFrame

df = pd.DataFrame(movies)

Clean data

df['year'] = pd.to_numeric(df['year'], errors='coerce')

df['rating'] = pd.to_numeric(df['rating'], errors='coerce')

df['votes'] = df['votes'].str.replace(',', '').astype(float)

Save

df.to_csv('netflix_movie_data.csv', index=False)

print(df.head())

106

The ResultThe Result

 title year genre director rating

0 Inception 2010 Action, Adventure... Christopher Nolan 8.8

1 Avatar 2009 Action, Adventure... James Cameron 7.9

2 The Matrix 1999 Action, Sci-Fi Lana Wachowski... 8.7

Now ready for ML modeling!

107

What We Learned: Three ToolsWhat We Learned: Three Tools

Tool When to Use Key Commands

Chrome DevTools Discover APIs, inspect requests Network tab, Copy as curl

curl Test requests quickly -X , -H , -d , `

Python requests Automate collection .get() , .post() , .json()

Plus BeautifulSoup for scraping when needed!

108

Part 12: Looking AheadPart 12: Looking Ahead

Lab preview and next week

109

This Week's LabThis Week's Lab

Hands-on Practice:

1. Chrome DevTools - Inspect API calls on real websites

2. curl exercises - Making API requests from terminal

3. OMDb API - Collecting movie metadata

4. Python requests - Building a data collection script

5. BeautifulSoup - Scraping a sample website

Goal: Build a working data collection pipeline.

110

Lab Environment SetupLab Environment Setup

Install dependencies

pip install requests beautifulsoup4 pandas

Get your API keys

OMDb: https://www.omdbapi.com/apikey.aspx (free tier)

Verify installation

python -c "import requests; print('Ready!')"

111

Next Week PreviewNext Week Preview
Week 2: Data Validation & Cleaning

Schema validation with Pydantic

Handling missing data

Type conversion and normalization

Data quality checks

Building validation pipelines

The data we collect today needs cleaning tomorrow!

112

Key TakeawaysKey Takeaways

1. Data collection is 80% of ML work - don't underestimate it

2. DevTools reveals hidden APIs - always check before scraping

3. curl for quick testing - then convert to Python

4. requests for automation - handle loops, errors, storage

5. Scraping is plan B - use when APIs don't exist

6. Be ethical - respect robots.txt, rate limits, ToS

113

ResourcesResources

Documentation:

curl - Command-line HTTP client

requests - Python HTTP library

BeautifulSoup - HTML parsing

Free APIs for Practice:

JSONPlaceholder - Fake REST API

OMDb API - Movie database

Public APIs - Curated list

Teaching API - No key needed!

114

https://curl.se/docs/
https://requests.readthedocs.io/
https://beautiful-soup-4.readthedocs.io/
https://jsonplaceholder.typicode.com/
https://www.omdbapi.com/
https://github.com/public-apis/public-apis
https://nipun-api-testing.hf.space/

Questions?Questions?

115

Thank You!Thank You!

See you in the lab!

116

