
1

Data Validation & QualityData Validation & Quality
Week 2 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar



Part 1: The MotivationPart 1: The Motivation

What did we actually collect?

2



Last Week: We Collected Data!Last Week: We Collected Data!

Remember our Netflix movie prediction project?

# We wrote this beautiful code

movies = []

for title in movie_list:

    response = requests.get(OMDB_API, params={"t": title})

    movies.append(response.json())

df = pd.DataFrame(movies)

df.to_csv("netflix_movies.csv")

print(f"Collected {len(df)} movies!")

Output: Collected 1000 movies!

Feeling: Victory! Time to train models!

3



Reality Check: Let's Look at the DataReality Check: Let's Look at the Data

import pandas as pd

df = pd.read_csv("lecture-demos/week02/data/movies.csv")

print(df.head())

   title          year    runtime    rating  boxoffice      genre                     rated

0  Inception      2010    148 min    8.8     $292576195  Action, Adventure, Sci-Fi   PG-13

1  Avatar         2009    162 min    7.9     $2923706026 Action, Adventure, Fantasy  PG-13

2  The Room       2003    99 min     3.9     N/A         Drama                       R

3  Inception      2010    148 min    8.8     $292576195  Action, Adventure, Sci-Fi   PG-13

4  Tenet          N/A     150 min    7.3     N/A         Action, Sci-Fi, Thriller    PG-13

Wait... something's wrong here.

4



The Problems EmergeThe Problems Emerge

# Issue Example

1 DUPLICATES Inception appears twice (rows 0 and 3)

2 MISSING Year is "N/A" for Tenet (row 4)

3 WRONG TYPES Runtime is "148 min" not integer 148

4 INCONSISTENT BoxOffice has "$" and commas

5 N/A VALUES Some BoxOffice entries are literally "N/A"

5



Let's Dig DeeperLet's Dig Deeper

print(df.info())

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 5 columns):

 #   Column      Non-Null Count  Dtype

---  ------      --------------  -----

 0   Title       1000 non-null   object    <- All strings!

 1   Year        987 non-null    object    <- String, not int!

 2   Runtime     1000 non-null   object    <- "148 min" string

 3   imdbRating  892 non-null    object    <- String, not float!

 4   BoxOffice   634 non-null    object    <- "$292,576,195" string

Every column is a string (object)!

366 movies have no BoxOffice data!

6



What Happens If We Ignore This?What Happens If We Ignore This?

# Naive approach: just train the model!

from sklearn.linear_model import LinearRegression

X = df[['Year', 'Runtime', 'imdbRating']]

y = df['BoxOffice']

model = LinearRegression()

model.fit(X, y)

ValueError: could not convert string to float: '148 min'

The model refuses to train.

7



Or Worse: Silent FailuresOr Worse: Silent Failures

# "Fix" by forcing numeric conversion

df['Year'] = pd.to_numeric(df['Year'], errors='coerce')

df['Rating'] = pd.to_numeric(df['imdbRating'], errors='coerce')

# Now 13 movies have NaN year, 108 have NaN rating

# We lost data silently!

# Train anyway

model.fit(df[['Year', 'Rating']].dropna(), y.dropna())

# Model trains on 521 movies instead of 1000!

You trained on half your data without realizing.

8



Real-World Data Quality DisastersReal-World Data Quality Disasters

Company What Happened Cost

NASA Mars

Orbiter

Lockheed used pound-seconds, NASA expected newton-

seconds
$327 million spacecraft lost

Knight Capital Old code reactivated on 1 of 8 servers during deployment $440 million in 45 minutes

UK COVID Stats Excel .xls format limited to 65,536 rows 16,000 cases unreported

Zillow iBuying Home price algorithm couldn't handle market volatility
$500 million loss, program shut

down

Data quality is not optional. It's survival.

9

https://science.nasa.gov/mission/mars-climate-orbiter/
https://science.nasa.gov/mission/mars-climate-orbiter/
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://www.theregister.com/2020/10/05/excel_england_coronavirus_contact_error/
https://www.gsb.stanford.edu/insights/flip-flop-why-zillows-algorithmic-home-buying-venture-imploded


The Data Quality PyramidThe Data Quality Pyramid

You can't skip layers. Each depends on the one below.

10



The Cost of Skipping ValidationThe Cost of Skipping Validation

The 1-10-100 Rule: It costs $1 to verify data at entry, $10 to fix it later, and $100 to recover from bad decisions

made with bad data.

Where do problems get discovered?

Stage Discovery Cost Example

Data Entry $1 Validation rejects bad input

Processing $10 ETL* pipeline fails

Analysis $50 Analyst spots anomaly in report

Production $100+ Model makes bad predictions

Business Impact $1000+ Wrong decisions based on flawed data

*ETL = Extract, Transform, Load - the process of moving data from sources to a destination (e.g., database or

data warehouse)

Earlier is always cheaper.
11



Today's MissionToday's Mission

Transform messy raw data into clean, validated data.

Tools we'll learn:

Unix commands: head , tail , wc , file , sort , uniq

jq: JSON processing powerhouse

CSVkit: CSV Swiss Army knife

JSON Schema: Language-agnostic data contracts

Pydantic: Pythonic data validation

Principle: Inspect before you trust. Validate before you use.

12



Part 2: Types of Data ProblemsPart 2: Types of Data Problems

Know your enemy

13



A Taxonomy of Data ProblemsA Taxonomy of Data Problems
The Six Data Quality Dimensions

Dimension Question Example Problem

Completeness Is all expected data present? Missing ratings, null values

Accuracy Is the data correct? Year 2099 for a 1999 movie

Consistency Does data agree across sources? "USA" vs "United States"

Validity Does data conform to rules? Rating of 15.0 (max is 10)

Uniqueness Are there duplicates? Same movie appears 3 times

Timeliness Is data up-to-date? Using 2019 prices in 2024

Let's see examples of each...

14



Problem 1: Missing ValuesProblem 1: Missing Values

The data simply isn't there.

title,year,rating,revenue

Inception,2010,8.8,292576195

Avatar,2009,7.9,2923706026

The Room,2003,3.9,

Tenet,,7.3,363656624

Types of missingness:

Empty string: ""

Null/None: null  in JSON

Sentinel value: "N/A" , "NULL" , -1 , 9999

Missing key: Key doesn't exist in JSON

Why it matters: ML models can't handle missing values directly.

15



Problem 2: Wrong Data TypesProblem 2: Wrong Data Types

Data exists but in wrong format.

{

  "title": "Inception",

  "year": "2010",          // String, should be integer

  "rating": "8.8",         // String, should be float

  "runtime": "148 min",    // String with unit, should be integer

  "released": "16 Jul 2010" // String, should be date

}

Common type issues:

Numbers stored as strings

Dates in various string formats

Booleans as "true"/"false"/"yes"/"no"/"1"/"0"

Lists stored as comma-separated strings

16



Problem 3: Inconsistent FormatsProblem 3: Inconsistent Formats

Same concept, different representations.

# Date formats

2010-07-16

07/16/2010

16 Jul 2010

July 16, 2010

# Currency formats

$292,576,195

292576195

$292.5M

292,576,195 USD

# Boolean formats

true, True, TRUE, 1, yes, Yes, Y

Why it matters: Can't compare or aggregate inconsistent data.

17



Problem 4: DuplicatesProblem 4: Duplicates

Same record appears multiple times.

title,year,rating

Inception,2010,8.8

Avatar,2009,7.9

Inception,2010,8.8      <- Exact duplicate

The Matrix,1999,8.7

inception,2010,8.8      <- Case variation duplicate

Inception,2010,8.9      <- Near duplicate (different rating?)

Types of duplicates:

Exact: Identical in every field

Partial: Same key, different values (which is correct?)

Fuzzy: Similar but not identical ("Spiderman" vs "Spider-Man")

18



Problem 5: Outliers and AnomaliesProblem 5: Outliers and Anomalies

Values that are technically valid but suspicious.

title,year,rating,budget

Inception,2010,8.8,160000000

Avatar,2009,7.9,237000000

The Room,2003,3.9,6000000

Avengers,2012,8.0,-50000000     <- Negative budget?

Unknown,2025,9.9,999999999999   <- Future year, impossible rating

Questions to ask:

Is this value within reasonable range?

Is this value possible given business rules?

Is this value consistent with other fields?

19



Problem 6: Encoding IssuesProblem 6: Encoding Issues

Text looks garbled or contains strange characters.

Expected: "Amelie"

Got:      "AmÃ©lie"      <- UTF-8 read as Latin-1

Expected: "Japanese text"

Got:      "æ¥æ¬èª"        <- Wrong encoding

Expected: "Zoe"

Got:      "Zo\xeb"        <- Raw bytes shown

Common encoding issues:

UTF-8 vs Latin-1 (ISO-8859-1)

Windows-1252 vs UTF-8

BOM (Byte Order Mark) at file start

20



Problem 7: Schema ViolationsProblem 7: Schema Violations

Data structure doesn't match expectations.

// Expected schema

{"title": "string", "year": "integer", "genres": ["string"]}

// Actual data

{"title": "Inception", "year": 2010, "genres": ["Sci-Fi", "Action"]}  // OK

{"title": "Avatar", "year": "2009", "genres": "Action"}               // year is string, genres is string not array

{"Title": "Matrix", "Year": 1999}                                      // Wrong case, missing genres

{"title": null, "year": 2020, "genres": []}                           // Null title

Schema defines: Field names, types, required fields, constraints.

21



Summary: Data Problem ChecklistSummary: Data Problem Checklist

Problem Question to Ask Tool to Detect

Missing Are there nulls/empty values? csvstat , pandas

Types Are numbers actually numbers? file , schema validation

Format Is date format consistent? grep , regex

Duplicates Are there repeated rows? sort , uniq , csvsql

Outliers Are values in valid range? csvstat , histograms

Encoding Is text readable? file , iconv

Schema Does structure match spec? JSON Schema, Pydantic

22



Part 3: First Look at Your DataPart 3: First Look at Your Data

Unix tools for initial inspection

23



Demo Files LocationDemo Files Location

All demos use data from:

lecture-demos/week02/

├── data/

│   ├── movies.csv        # 96 movies with quality issues

│   ├── movies.json       # 25 movies with issues (JSON)

│   ├── movie.json        # Single movie (OMDB format)

│   └── movie_schema.json # JSON Schema definition

├── 01_unix_inspection.sh # Unix CLI demos

├── 02_jq_basics.sh       # jq JSON processing

├── 03_csvkit_demo.sh     # CSVkit tools

├── 04_json_schema_validation.py

├── 05_pydantic_basics.py

├── 06_data_profiling.py

└── 07_validation_pipeline.py

Run demos from: cd lecture-demos/week02/data

24



Before You Do Anything: Look at the DataBefore You Do Anything: Look at the Data

Golden Rule: Never process data you haven't inspected.

# What kind of file is this?

file movies.csv

# How big is it?

ls -lh movies.csv

wc -l movies.csv

# What does it look like?

head movies.csv

tail movies.csv

These 5 commands should be muscle memory.

25



The The filefile  Command Command

Tells you what type of file you're dealing with.

# 01_unix_inspection.sh → PART 1

$ file movies.csv

movies.csv: UTF-8 Unicode text

$ file movies.json

movies.json: JSON text data

$ file movie.json

movie.json: JSON text data

# Check encoding specifically

$ file -i movies.csv

movies.csv: text/plain; charset=utf-8

Reveals: Text encoding, line endings, file format

26



The The wcwc  Command Command

Word count - but more useful for lines and characters.

# 01_unix_inspection.sh → PART 2

$ wc movies.csv

    97    496  6847 movies.csv

    |     |    |

    |     |    +-- bytes

    |     +------- words

    +------------- lines

# Just line count (most common)

$ wc -l movies.csv

97 movies.csv

# 97 lines = 1 header + 96 data rows

$ wc -l movies.json

27 movies.json

Quick sanity check: Does line count match expectations?

27



The The headhead  Command Command

See the first N lines of a file.

# 01_unix_inspection.sh → PART 3

$ head -5 movies.csv

title,year,runtime,rating,boxoffice,genre,rated

Inception,2010,148 min,8.8,$292576195,"Action, Adventure, Sci-Fi",PG-13

Avatar,2009,162 min,7.9,$2923706026,"Action, Adventure, Fantasy",PG-13

The Room,2003,99 min,3.9,N/A,Drama,R

Inception,2010,148 min,8.8,$292576195,"Action, Adventure, Sci-Fi",PG-13

$ head -3 movies.json

[

  {"Title": "Inception", "Year": "2010", ...},

  {"Title": "Avatar", "Year": "2009", ...},

Use case: Quickly see headers and sample data.

28



The The tailtail  Command Command

See the last N lines of a file.

# 01_unix_inspection.sh → PART 4

$ tail -5 movies.csv

Blackfish,2013,83 min,8.1,$2073582,"Documentary, Drama",PG-13

The Cove,2009,92 min,8.4,$864000,Documentary,PG-13

An Inconvenient Truth,2006,96 min,7.4,$50000000,Documentary,PG

March of the Penguins,2005,80 min,7.5,$127400000,"Documentary, Family",G

...

# Skip header (everything except first line)

$ tail -n +2 movies.csv | head -3

Use case: Check if file ends properly, skip headers.

29



Combining head and tailCombining head and tail

See a slice of the file:

# Lines 100-110 (skip 99, take 11)

$ head -110 movies.csv | tail -11

# See header + specific row range

$ head -1 movies.csv && sed -n '500,510p' movies.csv

Practical example:

# File has 1 million rows, peek at middle

$ head -500000 huge.csv | tail -10

30



The The sortsort  Command Command

Sort lines alphabetically or numerically.

# 01_unix_inspection.sh → PART 5

# Sort by title (first 5)

$ tail -n +2 movies.csv | sort -t',' -k1 | head -5

# Sort by year descending (first 5)

$ tail -n +2 movies.csv | sort -t',' -k2 -nr | head -5

Tenet,N/A,150 min,7.3,N/A,...

Future Movie,2030,120 min,...

Unknown Movie,2025,90 min,...

31



sortsort  Flags Flags

Flag Meaning

-t',' Field delimiter is comma

-k3 Sort by 3rd field

-n Numeric sort

-r Reverse (descending)

-u Remove duplicates

# Combine flags: sort by rating, descending, unique

$ sort -t',' -k3 -nr -u movies.csv

32



The The uniquniq  Command Command

Find or remove duplicate lines.

# 01_unix_inspection.sh → PART 6

# Remove adjacent duplicates (MUST sort first!)

$ sort movies.csv | uniq

# Count occurrences of each line

$ sort movies.csv | uniq -c

Important: uniq  only detects adjacent duplicates. Always sort  first!

33



uniquniq  Options Options

Option What it shows

(none) Deduplicated lines

-c Count of each line

-d Only duplicated lines

-u Only unique lines (appear once)

# Show only duplicates

$ sort movies.csv | uniq -d

34



Finding Duplicates: Practical ExampleFinding Duplicates: Practical Example

# 01_unix_inspection.sh → PART 6

# Find duplicate titles

$ cut -d',' -f1 movies.csv | sort | uniq -d

Inception

Spider-Man

The Matrix

35



Counting DuplicatesCounting Duplicates

# 01_unix_inspection.sh → PART 6

# How many times does each title appear?

$ cut -d',' -f1 movies.csv | sort | uniq -c | sort -rn | head -5

   3 Spider-Man

   2 The Matrix

   2 Inception

   1 Your Name

   1 WALL-E

Found 3 duplicate titles! (Spider-Man appears 3x, others 2x)

36



The The cutcut  Command Command

Extract columns from delimited data.

# 01_unix_inspection.sh → PART 7

# Get titles (first 5)

$ cut -d',' -f1 movies.csv | head -5

title

Inception

Avatar

The Room

Inception

# Get title and rating (columns 1 and 4)

$ cut -d',' -f1,4 movies.csv | head -5

title,rating

Inception,8.8

Avatar,7.9

The Room,3.9

37



The The grepgrep  Command Command

Search for patterns in text.

# 01_unix_inspection.sh → PART 8

# Find rows containing "Inception"

$ grep "Inception" movies.csv

Inception,2010,148 min,8.8,$292576195,"Action, Adventure, Sci-Fi",PG-13

Inception,2010,148 min,8.8,$292576195,"Action, Adventure, Sci-Fi",PG-13

# Count N/A values

$ grep -c "N/A" movies.csv

15

38



grepgrep  Options Options

Option Effect

-c Count matches

-n Show line numbers

-v Invert (lines NOT matching)

-i Case insensitive

# 01_unix_inspection.sh → PART 8

# N/A with line numbers (first 5)

$ grep -n "N/A" movies.csv | head -5

# Case insensitive search for "matrix"

$ grep -i "matrix" movies.csv

The Matrix,1999,136 min,8.7,$463517383,"Action, Sci-Fi",R

The Matrix,1999,136 min,8.7,$463517383,"Action, Sci-Fi",R

39



Putting It Together: Initial InspectionPutting It Together: Initial Inspection

# Run: bash inspect_data.sh (in lecture-demos/week02/)

# Quick one-liner inspection

file movies.csv && wc -l movies.csv && head -3 movies.csv

# Check for issues

echo "N/A values: $(grep -c 'N/A' movies.csv)"

echo "Empty fields: $(grep -c ',,' movies.csv)"

echo "Duplicates: $(cut -d',' -f1 movies.csv | sort | uniq -d | wc -l)"

See full script: lecture-demos/week02/inspect_data.sh

40



Part 4: jq - JSON ProcessingPart 4: jq - JSON Processing

The Swiss Army knife for JSON

41



Why jq?Why jq?

JSON is everywhere:

API responses

Configuration files

Log files

NoSQL databases

Problem: JSON is hard to read and process in shell.

# Raw JSON - unreadable mess

$ cat movies.json

{"Title":"Inception","Year":"2010","Rated":"PG-13","Released":"16 Jul 2010","Runtime":"148 min","Genre":"Action, Adventure, Sci-Fi"}

Solution: jq  - a lightweight JSON processor.

42



The jq Mental ModelThe jq Mental Model

Think of jq as a pipeline: Data flows in, gets transformed, flows out. Each filter transforms the data for the

next filter.

Input JSON  -->  Filter 1  -->  Filter 2  -->  Filter 3  -->  Output

    .            .movies       .[0]          .title         "Inception"

 (whole doc)   (get field)   (first elem)  (get title)

Key concepts:

.  = current data (identity)

|  = pipe to next filter

[]  = iterate over array

.field  = access object field

jq is like SQL for JSON - query and transform in one line.
43



jq Basics: Pretty Printingjq Basics: Pretty Printing

# 02_jq_basics.sh → PART 1

$ cat movie.json | jq .

{

  "Title": "Inception",

  "Year": "2010",

  "Rated": "PG-13",

  "Runtime": "148 min",

  "Genre": "Action, Adventure, Sci-Fi",

  "Director": "Christopher Nolan",

  "imdbRating": "8.8",

  "BoxOffice": "$292,576,195"

}

The .  is the identity filter - it means "the whole input".

44



jq: Extracting Fieldsjq: Extracting Fields

# 02_jq_basics.sh → PART 2

# Get a single field

$ cat movie.json | jq '.Title'

"Inception"

# Get multiple fields

$ cat movie.json | jq '.Title, .Year'

"Inception"

"2010"

# Get first Rating (nested array)

$ cat movie.json | jq '.Ratings[0]'

{"Source": "Internet Movie Database", "Value": "8.8/10"}

Syntax: .fieldname  extracts that field.

45



jq: Working with Arraysjq: Working with Arrays

# 02_jq_basics.sh → PART 3 (movies.json has 25 movies with issues)

# Get number of movies

$ cat movies.json | jq 'length'

25

# Get first movie

$ cat movies.json | jq '.[0]'

{"Title": "Inception", "Year": "2010", "Runtime": "148 min", ...}

# Get all titles (first 5)

$ cat movies.json | jq '.[].Title' | head -5

"Inception"

"Avatar"

"The Room"

"Inception"

46



jq: The Array Iterator jq: The Array Iterator [][]

# .[] iterates over array elements

$ cat movies.json | jq '.[]'

{"Title": "Inception", "Year": "2010"}

{"Title": "Avatar", "Year": "2009"}

{"Title": "The Matrix", "Year": "1999"}

# Chain with field extraction

$ cat movies.json | jq '.[].Title'

"Inception"

"Avatar"

"The Matrix"

# Same as:

$ cat movies.json | jq '.[] | .Title'

The pipe |  passes output to next filter.

47



jq: Building New Objectsjq: Building New Objects

# 02_jq_basics.sh → PART 4

# Transform structure (first 3)

$ cat movies.json | jq '.[:3] | .[] | {name: .Title, year: .Year, rating: .imdbRating}'

{"name": "Inception", "year": "2010", "rating": "8.8"}

{"name": "Avatar", "year": "2009", "rating": "7.9"}

{"name": "The Room", "year": "2003", "rating": "3.9"}

# Collect into array

$ cat movies.json | jq '[.[:3][] | {name: .Title, year: .Year}]'

[

  {"name": "Inception", "year": "2010"},

  {"name": "Avatar", "year": "2009"},

  {"name": "The Room", "year": "2003"}

]

48



jq: Filtering with jq: Filtering with select()select()

# 02_jq_basics.sh → PART 5

# Find movies with N/A year

$ cat movies.json | jq '.[] | select(.Year == "N/A") | .Title'

"Tenet"

# Find movies with N/A BoxOffice

$ cat movies.json | jq '.[] | select(.BoxOffice == "N/A") | .Title'

"The Room"

"Tenet"

"Old Silent Film"

# Find movies with null/empty title

$ cat movies.json | jq '.[] | select(.Title == null or .Title == "")'

49



jq: Type Conversionjq: Type Conversion

Remember: API data often has numbers as strings!

# 02_jq_basics.sh → PART 6

# Convert string to number

$ echo '{"Year": "2010"}' | jq '.Year | tonumber'

2010

# Safe year extraction (first 5 valid)

$ cat movies.json | jq '[.[] | select(.Year != "N/A" and .Year != null) | {title: .Title, year: (.Year | tonumber)}] | .[:5]'

[

  {"title": "Inception", "year": 2010},

  {"title": "Avatar", "year": 2009},

  ...

]

50



jq: Handling Missing Datajq: Handling Missing Data

# 02_jq_basics.sh → PART 7

# Default value with //

$ echo '{"title": "Test"}' | jq '.rating // "N/A"'

"N/A"

# Check if field exists

$ cat movie.json | jq 'has("BoxOffice")'

true

$ cat movie.json | jq 'has("Budget")'

false

# Count non-null ratings

$ cat movies.json | jq '[.[] | select(.imdbRating != null and .imdbRating != "N/A")] | length'

23

51



jq: Aggregation Functionsjq: Aggregation Functions

# 02_jq_basics.sh → PART 8

# Count elements

$ cat movies.json | jq 'length'

25

# Get unique Rated values

$ cat movies.json | jq '[.[].Rated] | unique'

["NR", "Not Rated", "PG", "PG-13", "R", "XX"]

# Count by Rated (simplified)

$ cat movies.json | jq 'group_by(.Rated) | map({rated: .[0].Rated, count: length})'

[

  {"rated": "NR", "count": 1},

  {"rated": "PG", "count": 2},

  {"rated": "PG-13", "count": 9},

52



jq: Sortingjq: Sorting

# 02_jq_basics.sh → PART 9

# Sort by Year (first 5 titles)

$ cat movies.json | jq '[.[] | select(.Year != "N/A")] | sort_by(.Year) | .[:5] | .[].Title'

"The Matrix"

"Amelie"

"Spider-Man"

...

# Top 5 by Year (newest)

$ cat movies.json | jq '[.[] | select(.Year != "N/A")] | sort_by(.Year) | reverse | .[:5] | .[] | "\(.Title) (\(.Year))"'

"Unknown Movie (2025)"

"Avengers: Endgame (2019)"

"Parasite (2019)"

...

53



jq: Groupingjq: Grouping

# Group movies by year

$ cat movies.json | jq 'group_by(.Year)'

[

  [{"Title": "The Matrix", "Year": "1999"}],

  [{"Title": "Avatar", "Year": "2009"}],

  [{"Title": "Inception", "Year": "2010"}, {"Title": "Toy Story 3", "Year": "2010"}]

]

# Count movies per year

$ cat movies.json | jq 'group_by(.Year) | map({year: .[0].Year, count: length})'

[

  {"year": "1999", "count": 1},

  {"year": "2009", "count": 1},

  {"year": "2010", "count": 2}

]

54



jq: Raw Output Modejq: Raw Output Mode

# 02_jq_basics.sh → PART 10

# Raw strings (without quotes)

$ cat movies.json | jq -r '.[0:3][].Title'

Inception

Avatar

The Room

# CSV output (first 5)

$ cat movies.json | jq -r '.[:5][] | [.Title, .Year, .imdbRating] | @csv'

"Inception","2010","8.8"

"Avatar","2009","7.9"

"The Room","2003","3.9"

...

# TSV output (first 3)

55



jq: Finding Data Issuesjq: Finding Data Issues

# 02_jq_basics.sh → PART 11

# Find movies with "N/A" years

$ cat movies.json | jq '[.[] | select(.Year == "N/A")] | length'

1

# Find movies with null/empty titles

$ cat movies.json | jq '.[] | select(.Title == null or .Title == "") | .Year'

"2020"

"2018"

# Find movies with invalid ratings (not a number)

$ cat movies.json | jq '.[] | select(.imdbRating == "invalid") | .Title'

"Joker"

56



jq: Data Quality Checksjq: Data Quality Checks

# 02_jq_basics.sh → PART 11 (Data Summary)

# Full data quality summary

$ cat movies.json | jq '{

  total: length,

  null_titles: [.[] | select(.Title == null or .Title == "")] | length,

  na_years: [.[] | select(.Year == "N/A")] | length,

  na_boxoffice: [.[] | select(.BoxOffice == "N/A")] | length

}'

{

  "total": 25,

  "null_titles": 2,

  "na_years": 1,

  "na_boxoffice": 3

}

57



jq Cheat Sheet - Basicsjq Cheat Sheet - Basics

Task Command

Pretty print jq .

Get field jq '.fieldname'

Get nested jq '.a.b.c'

Array element jq '.[0]'

All elements jq '.[]'

Filter jq '.[] | select(.x > 5)'

58



jq Cheat Sheet - Advancedjq Cheat Sheet - Advanced

Task Command

Build object jq '{a: .x, b: .y}'

Count jq 'length'

Sort jq 'sort_by(.field)'

Unique jq 'unique'

Raw strings jq -r

59



Part 5: CSVkitPart 5: CSVkit

The CSV Swiss Army Knife

60



Why CSVkit?Why CSVkit?

CSV looks simple but hides complexity:

Quoted fields with commas inside

Multiline values

Different delimiters

Inconsistent escaping

CSVkit: A suite of command-line tools for CSV files.

# Installation

pip install csvkit

Tools we'll cover:

csvlook , csvstat , csvcut , csvgrep , csvsort , csvjson , csvsql

61



csvlook: Pretty Print CSVcsvlook: Pretty Print CSV

Makes CSV readable in terminal.

# 03_csvkit_demo.sh → PART 1

$ csvlook movies.csv | head -7

| title      | year | runtime  | rating | boxoffice    | genre                     | rated |

| ---------- | ---- | -------- | ------ | ------------ | ------------------------- | ----- |

| Inception  | 2010 | 148 min  |    8.8 | $292576195   | Action, Adventure, Sci-Fi | PG-13 |

| Avatar     | 2009 | 162 min  |    7.9 | $2923706026  | Action, Adventure, Fantasy| PG-13 |

| The Room   | 2003 | 99 min   |    3.9 | N/A          | Drama                     | R     |

| Inception  | 2010 | 148 min  |    8.8 | $292576195   | Action, Adventure, Sci-Fi | PG-13 |

| Tenet      | N/A  | 150 min  |    7.3 | N/A          | Action, Sci-Fi, Thriller  | PG-13 |

Compare to raw CSV - much easier to read!

62



csvstat: Data Profilingcsvstat: Data Profiling

Get statistics for every column automatically!

# 03_csvkit_demo.sh → PART 2

$ csvstat -c title movies.csv

  1. "title"

        Type of data:          Text

        Contains null values:  True

        Unique values:         92

        Longest value:         29 characters

        Most common values:    Spider-Man (3x)

                               The Matrix (2x)

                               Inception (2x)

# Just counts

$ csvstat --count movies.csv

96

63



csvstat: Specific Columnscsvstat: Specific Columns

# Stats for just one column

$ csvstat -c rating movies.csv

  3. "rating"

        Type of data:          Number

        Contains null values:  True (108 nulls)

        Smallest value:        1.2

        Largest value:         9.3

        Mean:                  6.84

        Median:                7.1

        StDev:                 1.23

# Stats for multiple columns

$ csvstat -c year,rating movies.csv

# Just show counts

$ csvstat --count movies.csv

64



csvcut: Select Columnscsvcut: Select Columns

# 03_csvkit_demo.sh → PART 3

# List column names

$ csvcut -n movies.csv

  1: title

  2: year

  3: runtime

  4: rating

  5: boxoffice

  6: genre

  7: rated

# Select by name (first 5)

$ csvcut -c title,year movies.csv | head -6

title,year

Inception,2010

65



csvgrep: Filter Rowscsvgrep: Filter Rows

# 03_csvkit_demo.sh → PART 4

# Exact match: Year = 2019

$ csvgrep -c year -m "2019" movies.csv | csvlook

# Titles starting with 'The'

$ csvgrep -c title -r "^The" movies.csv | csvcut -c title | head -10

# Rows without N/A in boxoffice (count)

$ csvgrep -c boxoffice -m "N/A" -i movies.csv | wc -l

# Rows with N/A rating

$ csvgrep -c rating -r "^N/A$" movies.csv | csvlook

66



csvsort: Sort Datacsvsort: Sort Data

# 03_csvkit_demo.sh → PART 5

# Sort by year (first 5)

$ csvsort -c year movies.csv | head -6

# Sort by rating descending (first 5)

$ csvsort -c rating -r movies.csv | head -6

# Sort by multiple columns

$ csvsort -c year,rating movies.csv | head -10

# Numeric sort happens automatically for number columns!

67



csvjson: Convert to JSONcsvjson: Convert to JSON

# 03_csvkit_demo.sh → PART 6

# First 3 rows as JSON

$ head -4 movies.csv | csvjson | jq '.'

[

  {"title": "Inception", "year": "2010", "runtime": "148 min", ...},

  {"title": "Avatar", "year": "2009", "runtime": "162 min", ...},

  {"title": "The Room", "year": "2003", "runtime": "99 min", ...}

]

# Indented output

$ head -3 movies.csv | csvjson -i 2

Great for converting between formats!

68



csvsql: Query CSV with SQL!csvsql: Query CSV with SQL!

Yes, you can run SQL on CSV files.

# 03_csvkit_demo.sh → PART 7

# Basic select

$ csvsql --query "SELECT title, rating FROM movies WHERE rating > 8.5 ORDER BY rating DESC" movies.csv | csvlook

# Find duplicates

$ csvsql --query "SELECT title, COUNT(*) as count FROM movies GROUP BY title HAVING count > 1" movies.csv | csvlook

| title      | count |

| ---------- | ----- |

| Inception  |     2 |

| Spider-Man |     3 |

| The Matrix |     2 |

69



csvsql: Data Validation Queriescsvsql: Data Validation Queries

# 03_csvkit_demo.sh → PART 7

# Movies per year (sample)

$ csvsql --query "SELECT year, COUNT(*) as count FROM movies GROUP BY year ORDER BY count DESC LIMIT 5" movies.csv | csvlook

# Count N/A boxoffice by year

$ csvsql --query "SELECT year, COUNT(*) as missing FROM movies WHERE boxoffice = 'N/A' GROUP BY year ORDER BY missing DESC LIMIT 5" movies.csv | csvlook

70



csvclean: Fix Common Issuescsvclean: Fix Common Issues

# 03_csvkit_demo.sh → PART 8

# Check for structural issues (dry run)

$ csvclean -n movies.csv

(no issues found)

# If issues existed, it would create:

# - movies_out.csv (cleaned)

# - movies_err.csv (errors with line numbers)

# Common fixes:

# - Removes rows with wrong column count

# - Normalizes quoting

# - Reports line numbers of errors

71



CSVkit Pipeline ExampleCSVkit Pipeline Example

# 03_csvkit_demo.sh → PART 9

# Top rated movies by genre (sample)

$ csvcut -c title,rating,genre movies.csv \

  | csvgrep -c rating -r "^[0-9]" \

  | csvsort -c rating -r \

  | head -10 \

  | csvlook

# Data quality summary

$ echo "Total rows: $(csvstat --count movies.csv)"

$ echo "Unique titles: $(csvcut -c title movies.csv | tail -n +2 | sort -u | wc -l)"

$ echo "N/A in boxoffice: $(csvgrep -c boxoffice -m 'N/A' movies.csv | wc -l)"

$ echo "N/A in rating: $(csvgrep -c rating -m 'N/A' movies.csv | wc -l)"

72



CSVkit Cheat Sheet - Core ToolsCSVkit Cheat Sheet - Core Tools

Tool Purpose Example

csvlook Pretty print csvlook data.csv

csvstat Statistics csvstat -c column data.csv

csvcut Select columns csvcut -c col1,col2 data.csv

csvgrep Filter rows csvgrep -c col -m "value"

csvsort Sort csvsort -c col -r data.csv

73



CSVkit Cheat Sheet - Advanced ToolsCSVkit Cheat Sheet - Advanced Tools

Tool Purpose Example

csvjson To JSON csvjson data.csv

csvsql SQL queries csvsql --query "..."

csvclean Fix issues csvclean data.csv

csvjoin Join files csvjoin -c id a.csv b.csv

csvstack Concatenate csvstack a.csv b.csv

74



Part 6: Data ProfilingPart 6: Data Profiling

Understanding your data before using it

75



What is Data Profiling?What is Data Profiling?

Data profiling = Analyzing data to understand its structure, content, and quality.

Aspect Questions to Ask

Structure How many rows? Columns? What types?

Completeness How many nulls per column?

Uniqueness How many distinct values? Duplicates?

Distribution Min, max, mean, median? Outliers?

Patterns What formats are used? Any anomalies?

76



Profiling Step 1: Basic ShapeProfiling Step 1: Basic Shape

# 03_csvkit_demo.sh → PART 2 (csvstat)

# How many rows and columns?

$ head -1 movies.csv | tr ',' '\n' | wc -l      # columns

7

$ wc -l movies.csv                              # rows (including header)

97

# Or with csvstat

$ csvstat --count movies.csv

96

First sanity check: Does shape match expectations?

77



Profiling Step 2: Column TypesProfiling Step 2: Column Types

$ csvstat movies.csv 2>&1 | grep "Type of data"

        Type of data:          Text

        Type of data:          Number

        Type of data:          Number

        Type of data:          Number

        Type of data:          Text

# Expected: title(text), year(int), rating(float), revenue(int), genre(text)

# Actual: Matches! But let's verify...

78



Profiling Step 3: Null AnalysisProfiling Step 3: Null Analysis

# Count nulls per column

$ csvstat movies.csv 2>&1 | grep -A1 "Contains null"

        Contains null values:  False

--

        Contains null values:  True (13 nulls)

--

        Contains null values:  True (108 nulls)

--

        Contains null values:  True (366 nulls)

Results:

Title: 0 nulls (good!)

Year: 13 nulls (1.3%)

Rating: 108 nulls (10.8%)

Revenue: 366 nulls (36.6%) - problem!

79



Profiling Step 4: Unique ValuesProfiling Step 4: Unique Values

# How many distinct values?

$ csvstat movies.csv 2>&1 | grep "Unique values"

        Unique values:         987      # title - expect 1000, so ~13 duplicates

        Unique values:         85       # year - reasonable range

        Unique values:         78       # rating - 1.0 to 10.0 scale

        Unique values:         634      # revenue - 634 non-null values

# Most common values (find duplicates, common patterns)

$ csvstat movies.csv 2>&1 | grep -A5 "Most common values"

80



Profiling Step 5: Value RangesProfiling Step 5: Value Ranges

$ csvstat -c year movies.csv

        Smallest value:        1920

        Largest value:         2024

        Mean:                  2005.3

        Median:                2010

        StDev:                 15.2

# Check for suspicious outliers

# 1920 seems old - is it valid?

# 2024 is current year - any future years?

# Find extremes

$ csvsort -c year movies.csv | head -5      # oldest

$ csvsort -c year -r movies.csv | head -5   # newest

81



Profiling Step 6: Pattern DetectionProfiling Step 6: Pattern Detection

# What values does 'rating' column have?

$ csvcut -c rating movies.csv | sort | uniq -c | sort -rn | head

    892 (valid numbers 1.0-10.0)

     47 N/A

     38

     23 Not Rated

# Aha! Three types of "missing":

# 1. Empty string

# 2. "N/A" string

# 3. "Not Rated" string

This is why automated profiling misses things!

82



Profiling Summary: Movies DatasetProfiling Summary: Movies Dataset

Column Type Nulls Unique Issues

title Text 0 987 13 duplicates

year Int 13 85 1920-2024 range

rating Float 108 78 "N/A", empty, "Not Rated"

revenue Int 366 634 36% missing!

genre Text 0 23 Multi-value ("Action, Drama")

Key findings:

1. Revenue is missing for 1/3 of movies

2. Rating has multiple representations of "missing"

3. There are 13 duplicate titles

4. Genre contains multiple values in one field

83



Part 7: Schema ValidationPart 7: Schema Validation

Contracts for your data

84



What is a Schema?What is a Schema?

Schema = A formal description of expected data structure.

Schema Defines Examples

Field names What columns/keys should exist?

Data types String, integer, float, boolean, array?

Constraints Required? Min/max? Pattern? Enum?

Relationships References to other data?

Analogy: A schema is like a contract between data producer and consumer.

85



Schema: The Blueprint AnalogySchema: The Blueprint Analogy

Schema = Blueprint: Before construction, everyone agrees on what to build. The blueprint defines structure -

and the building must match.

Without Schema With Schema

Builder guesses what's needed Clear expectations upfront

Can't verify if correct Automatic verification

Inconsistent decisions Everyone builds the same

Problems found when it breaks Problems caught early

86



Why Schemas MatterWhy Schemas Matter

Without schema:

# What is this?

data = {"yr": 2010, "rt": "8.8", "ttl": "Inception"}

# Wh k h t ? I t t i h ld it b fl t?

With schema:

# Clear expectations

schema = {

    "title": {"type": "string", "required": True},

    "year": {"type": "integer", "minimum": 1880, "maximum": 2030},

Schemas enable:

Automatic validation

Documentation

Code generation

Early error detection 87



JSON Schema: The StandardJSON Schema: The Standard

JSON Schema is a vocabulary for validating JSON data.

{

  "$schema": "https://json-schema.org/draft/2020-12/schema",

  "type": "object",

  "properties": {

    "title": {

      "type": "string",

      "minLength": 1

    },

    "year": {

      "type": "integer",

      "minimum": 1880,

      "maximum": 2030

    },

    "rating": {

      "type": "number",

      "minimum": 0,

88



JSON Schema: Type KeywordsJSON Schema: Type Keywords

Keyword Valid Values

"type": "string" "hello" , ""

"type": "integer" 42 , -1 , 0

"type": "number" 3.14 , 42 , -1.5

"type": "boolean" true , false

"type": "null" null

"type": "array" [1, 2, 3] , []

"type": "object" {"a": 1} , {}

Multiple types:

{"type": ["string", "null"]}   // String or null

89



JSON Schema: String ConstraintsJSON Schema: String Constraints

{

  "type": "string",

  "minLength": 1,              // At least 1 character

  "maxLength": 100,            // At most 100 characters

  "pattern": "^[A-Z].*$",      // Must start with uppercase

  "format": "email"            // Must be valid email

}

Common formats:

"email"  - Email address

"date"  - ISO 8601 date (2010-07-16)

"date-time"  - ISO 8601 datetime

"uri"  - Valid URI

"uuid"  - UUID format

90



JSON Schema: Number ConstraintsJSON Schema: Number Constraints

{

  "type": "number",

  "minimum": 0,                // >= 0

  "maximum": 10,               // <= 10

  "exclusiveMinimum": 0,       // > 0

  "exclusiveMaximum": 10,      // < 10

  "multipleOf": 0.1            // Must be multiple of 0.1

}

Example for rating:

{

  "type": "number",

  "minimum": 0,

  "maximum": 10,

  "multipleOf": 0.1

}

91



JSON Schema: ArraysJSON Schema: Arrays

{

  "genres": {

    "type": "array",

    "items": {"type": "string"},

    "minItems": 1,

    "maxItems": 10,

    "uniqueItems": true

  }

}

Keyword Meaning

items Schema for each element

minItems Minimum array length

maxItems Maximum array length

uniqueItems No duplicates allowed

92



JSON Schema: EnumsJSON Schema: Enums

Restrict to specific values:

{

  "rated": {

    "type": "string",

    "enum": ["G", "PG", "PG-13", "R", "NC-17", "Not Rated"]

  }

}

Validation result:

"PG-13"  - Valid

"PG13"  - Invalid (not in enum)

"M"  - Invalid (not in enum)

93



JSON Schema: Required FieldsJSON Schema: Required Fields

{

  "type": "object",

  "properties": {

    "title": {"type": "string"},

    "year": {"type": "integer"},

    "rating": {"type": "number"},

    "revenue": {"type": "integer"}

  },

  "required": ["title", "year"]    // Only title and year are required

}

Validation:

{"title": "X", "year": 2010}  - Valid (rating, revenue optional)

{"title": "X"}  - Invalid (missing required field: year)

94



Complete Movie Schema ExampleComplete Movie Schema Example

// lecture-demos/week02/data/movie_schema.json

{

  "type": "object",

  "properties": {

    "title": {"type": "string", "minLength": 1},

    "year": {"type": "integer", "minimum": 1888, "maximum": 2030},

    "rating": {"type": ["number", "null"], "minimum": 0, "maximum": 10},

    "genres": {"type": "array", "items": {"type": "string"}},

    "rated": {"enum": ["G", "PG", "PG-13", "R", "NC-17", "Not Rated"]}

  },

  "required": ["title", "year"]

}

Full schema: cat data/movie_schema.json | jq .

95



Validating with PythonValidating with Python

# 04_json_schema_validation.py

from jsonschema import validate, ValidationError

schema = {

    "type": "object",

    "properties": {

        "title": {"type": "string"},

        "year": {"type": "integer", "minimum": 1880}

    },

    "required": ["title", "year"]

}

movie = {"title": "Inception", "year": 2010}

try:

96



Schema-First DevelopmentSchema-First Development

Traditional approach:

1. Collect data

2. Write code to process it

3. Discover problems in production

Schema-first approach:

1. Define schema (contract)

2. Validate data against schema on ingestion

3. Reject invalid data early

4. Process only valid data

97



Part 8: PydanticPart 8: Pydantic

Pythonic data validation

98



Why Pydantic?Why Pydantic?

JSON Schema limitations:

Separate from your Python code

No IDE autocompletion

Manual validation calls

Verbose error handling

Pydantic advantages:

Uses Python type hints (you already know this!)

Automatic validation on object creation

IDE support (autocomplete, type checking)

Clear, readable error messages

Used by FastAPI, LangChain, and many modern libraries

99



Pydantic: Basic ModelPydantic: Basic Model

# 05_pydantic_basics.py

from pydantic import BaseModel

class Movie(BaseModel):

    title: str

    year: int

    rating: float

# Valid data - works!

movie = Movie(title="Inception", year=2010, rating=8.8)

print(movie.title)  # "Inception"

print(movie.year)   # 2010 (as int, not string!)

Key insight: Just define a class with type hints. Pydantic does the rest.

100



Pydantic: The Immigration Officer AnalogyPydantic: The Immigration Officer Analogy

Think of Pydantic like an immigration officer: Before entering the country (your code), your documents (data)

are checked. Wrong passport type? Rejected. Missing visa? Rejected. Once you're through, everyone inside is

guaranteed to have valid documents.

class Movie(BaseModel):  # <- The document checklist

    title: str           # Must have a title (like name on passport)

    year: int            # Must be a valid year (like birth date)

    rating: float        # Must have a rating (like visa number)

# Immigration check happens at entry (object creation)

movie = Movie(**raw_data)  # <- Validation happens HERE

# Once inside, you're guaranteed valid

print(movie.year + 1)  # Safe - year is definitely an int

No more "is this a string or int?" questions inside your code.

101



Pydantic: Automatic Type CoercionPydantic: Automatic Type Coercion

# Pydantic converts types automatically when possible

movie = Movie(title="Inception", year="2010", rating="8.8")

print(movie.year)    # 2010 (converted from string to int)

print(movie.rating)  # 8.8 (converted from string to float)

# But invalid conversions fail

movie = Movie(title="Inception", year="not a year", rating=8.8)

# ValidationError: Input should be a valid integer

Principle: Be strict about structure, flexible about representation.

102



Pydantic: Validation ErrorsPydantic: Validation Errors

from pydantic import ValidationError

try:

    movie = Movie(title="", year=2010, rating=8.8)

except ValidationError as e:

    print(e)

1 validation error for Movie

title

  String should have at least 1 character [type=string_too_short]

Errors are clear: Field name, what's wrong, and why.

103



Pydantic: Field ConstraintsPydantic: Field Constraints

# 05_pydantic_basics.py

from pydantic import BaseModel, Field

class Movie(BaseModel):

    title: str = Field(min_length=1)

    year: int = Field(ge=1880, le=2030)  # ge = greater or equal

    rating: float = Field(ge=0, le=10)

    revenue: int | None = None  # Optional field

Movie(title="X", year=1850, rating=8.0)

# ValidationError: year - Input should be >= 1880

104



Pydantic: Optional and Default ValuesPydantic: Optional and Default Values

from pydantic import BaseModel

from typing import Optional

class Movie(BaseModel):

    title: str

    year: int

    rating: Optional[float] = None      # Can be None

    genres: list[str] = []              # Default empty list

    is_released: bool = True            # Default value

movie = Movie(title="Tenet", year=2020)

print(movie.rating)      # None

print(movie.genres)      # []

print(movie.is_released) # True

105



Pydantic vs JSON SchemaPydantic vs JSON Schema

Aspect JSON Schema Pydantic

Language JSON (separate file) Python (in your code)

Type hints No Yes

IDE support Limited Full autocomplete

Validation Manual call Automatic on create

Error messages Technical Human-readable

Learning curve New syntax Just Python

Recommendation: Use Pydantic for Python projects, JSON Schema for APIs/cross-language.

106



Pydantic: The Mental ModelPydantic: The Mental Model
The Three-Step Workflow

Step Code What Happens

1. DEFINE class Movie(BaseModel): ... Declare your schema with type hints

2. CREATE movie = Movie(**raw_data) Validation happens automatically

3. USE movie.title , movie.year + 1 Data is guaranteed valid

At step 2, one of two things happens:

Valid data → Object created, ready to use

Invalid data → ValidationError  raised immediately

107



Pydantic: Practical ExamplePydantic: Practical Example

# 05_pydantic_basics.py - MovieFromAPI class

from pydantic import BaseModel, Field

from typing import Optional

class MovieFromAPI(BaseModel):

    """Validates movie data from OMDB API."""

    Title: str = Field(min_length=1)

    Year: str  # API returns string, we'll convert later

    imdbRating: Optional[str] = None

    BoxOffice: Optional[str] = None

# Parse API response - validation happens automatically

raw = {"Title": "Inception", "Year": "2010", "imdbRating": "8.8"}

movie = MovieFromAPI(**raw)  # Works!

108



What We'll Cover in LabWhat We'll Cover in Lab

Pydantic deep dive:

Nested models (Movie with Director, Actors)

Custom validators ( @validator  decorator)

Parsing JSON files with Pydantic

Model serialization ( .model_dump() , .model_dump_json() )

Strict mode vs coercion mode

The lab is where you'll get hands-on practice!

109



Part 9: Encoding & Edge CasesPart 9: Encoding & Edge Cases

When text isn't just text

110



The Encoding ProblemThe Encoding Problem

Computers store text as numbers. But which numbers?

Character 'A' = 65 (ASCII)

Character 'e' with accent = ??? (depends on encoding!)

Encoding = The mapping between characters and bytes.

Encoding Characters Use Case

ASCII 128 English only

Latin-1 256 Western European

UTF-8 1,112,064 Everything (modern standard)

UTF-16 Same as UTF-8 Different byte format

Windows-1252 256 Microsoft's Latin-1 variant

111



UTF-8: The Modern StandardUTF-8: The Modern Standard

UTF-8 is the dominant encoding for the web and modern systems.

Why UTF-8?

Backwards compatible with ASCII

Supports all languages

Variable length (1-4 bytes per character)

Self-synchronizing

# Check file encoding

$ file movies.csv

movies.csv: UTF-8 Unicode text

$ file old_data.csv

old_data.csv: ISO-8859-1 text

112



Encoding Problems in PracticeEncoding Problems in Practice

What you expect:

Amelie (with accent)

Crouching Tiger, Hidden Dragon (Chinese title)

What you get:

AmÃ©lie                    <- UTF-8 decoded as Latin-1

Crouching Tiger (????????)   <- Wrong encoding

Common scenarios:

1. File saved in one encoding, read in another

2. Copy-paste from web with different encoding

3. Database with mixed encodings

4. Legacy systems using old encodings 113



Detecting EncodingDetecting Encoding

# The file command guesses encoding

$ file -i movies.csv

movies.csv: text/plain; charset=utf-8

# For more accuracy, use chardet (Python)

$ pip install chardet

$ chardetect movies.csv

movies.csv: utf-8 with confidence 0.99

# Or with Python

$ python -c "import chardet; print(chardet.detect(open('movies.csv','rb').read()))"

{'encoding': 'utf-8', 'confidence': 0.99}

114



Converting EncodingsConverting Encodings

# Convert from Latin-1 to UTF-8

$ iconv -f ISO-8859-1 -t UTF-8 old_file.csv > new_file.csv

# Convert from Windows-1252 to UTF-8

$ iconv -f WINDOWS-1252 -t UTF-8 windows_file.csv > utf8_file.csv

# List available encodings

$ iconv -l

Python approach:

# Read with specific encoding

with open('file.csv', encoding='latin-1') as f:

    content = f.read()

# Write as UTF-8

with open('file_utf8.csv', 'w', encoding='utf-8') as f:

    f.write(content)

115



CSV Edge Cases: QuotingCSV Edge Cases: Quoting

What if your data contains commas?

title,year,description

Inception,2010,A mind-bending, complex thriller    <- WRONG! Extra column

"Inception",2010,"A mind-bending, complex thriller" <- Correct: quoted

What if your data contains quotes?

title,year,tagline

Say "Hello",2020,A movie about "greetings"   <- WRONG!

"Say ""Hello""",2020,"A movie about ""greetings""" <- Correct: escaped

Rule: Fields with commas, quotes, or newlines must be quoted.

116



CSV Edge Cases: Line EndingsCSV Edge Cases: Line Endings

Different systems use different line endings:

System Line Ending Bytes

Unix/Linux/Mac LF \n  (0x0A)

Windows CRLF \r\n  (0x0D 0x0A)

Old Mac CR \r  (0x0D)

Problems occur when mixing:

# Detect line endings

$ file data.csv

data.csv: ASCII text, with CRLF line terminators

# Convert Windows to Unix

$ sed -i 's/\r$//' data.csv

# Or

$ dos2unix data.csv

117



CSV Edge Cases: Multiline ValuesCSV Edge Cases: Multiline Values

Values can contain newlines (if quoted):

title,year,plot

"Inception",2010,"A thief who steals corporate secrets through dream-sharing

technology is given the inverse task of planting an idea into the mind

of a C.E.O."

"Avatar",2009,"A paraplegic Marine..."

This is valid CSV! But many simple parsers break.

Solution: Use proper CSV parsers (pandas, csvkit), not line-by-line reading.

118



CSV Edge Cases: Empty vs NullCSV Edge Cases: Empty vs Null

What does this mean?

title,year,rating

Inception,2010,8.8

Avatar,2009,

The Room,2003,""

Row rating value Interpretation

1 8.8 Rating is 8.8

2 (nothing) Rating is null/missing

3 "" Rating is empty string

Is empty string the same as null? Depends on your interpretation!

119



Handling Edge Cases: Best PracticesHandling Edge Cases: Best Practices

1. Always specify encoding explicitly:

pd.read_csv('file.csv', encoding='utf-8')

2. Use proper CSV parsers:

# Good - handles quoted commas

import csv

with open('file.csv') as f:

    reader = csv.reader(f)

# Bad - breaks on "Action, Drama"

fields = line.split(',')

120



Handling Edge Cases: ValidationHandling Edge Cases: Validation

3. Validate after reading:

assert df['year'].dtype == 'int64', "Year should be integer"

assert df['rating'].between(0, 10).all(), "Rating out of range"

4. Handle missing values explicitly:

# Don't guess - be explicit

df['year'] = pd.to_numeric(df['year'], errors='coerce')

missing_count = df['year'].isna().sum()

print(f"Converted {missing_count} invalid years to NaN")

121



Part 10: Validation PrinciplesPart 10: Validation Principles

Best practices for data quality

122



Principle 1: Validate at the BoundaryPrinciple 1: Validate at the Boundary

Check data when it enters your system, not later.

External Data → Validation Layer → Your System

↓

Invalid data rejected

Why?

Invalid data doesn't spread through your system

Easier to debug (you know exactly where it failed)

Clear separation of concerns

123



Principle 2: Fail FastPrinciple 2: Fail Fast

Stop immediately when you find invalid data.

# Bad: Continue and hope for the best

for movie in movies:

    try:

        process(movie)

    except:

        pass  # Silent failure!

# Good: Fail fast and loud

for movie in movies:

    validate(movie)  # Raises exception if invalid

    process(movie)

Benefits:

Find problems early

Don't waste time processing bad data

Easier debugging 124



Principle 3: Be Explicit About Missing DataPrinciple 3: Be Explicit About Missing Data

Don't guess. Document and handle explicitly.

# Bad: Implicit handling

rating = movie.get('rating', 0)  # Is 0 a valid rating or missing?

# Good: Explicit handling

rating = movie.get('rating')

if rating is None:

    raise ValidationError("Rating is required")

# Or

if rating is None:

    rating = DEFAULT_RATING  # Explicitly documented default

125



Principle 4: Validate Types AND ValuesPrinciple 4: Validate Types AND Values

Type checking isn't enough.

# Type is correct (integer), but value is invalid

year = -500     # Negative year

year = 9999     # Far future

year = 1066     # Before cinema existed

# Need both type AND range validation

def validate_year(year):

    if not isinstance(year, int):

        raise TypeError("Year must be integer")

    if year < 1880 or year > 2030:

        raise ValueError(f"Year {year} out of valid range")

126



Principle 5: Log Validation FailuresPrinciple 5: Log Validation Failures

Keep records of what failed and why.

import logging

def validate_movies(movies):

    valid = []

    for i, movie in enumerate(movies):

        try:

            validate(movie)

            valid.append(movie)

        except ValidationError as e:

            logging.warning(f"Row {i}: {e.message} - {movie}")

logging info(f"Validated {len(valid)}/{len(movies)} movies")

Why?

Understand data quality trends

Debug upstream issues

Audit trail 127



Principle 6: Separate Validation from CleaningPrinciple 6: Separate Validation from Cleaning

Two different operations:

Validation Cleaning

Checks if data is valid Fixes invalid data

Returns true/false Modifies data

Should not modify Requires decisions

Objective Subjective

# Validation: Does it pass?

def is_valid_year(year):

    return isinstance(year, int) and 1880 <= year <= 2030

# Cleaning: Make it pass

def clean_year(year_str):

    return int(year_str.strip())

128



Principle 7: Test Your ValidationPrinciple 7: Test Your Validation

Validation code needs tests too!

def test_year_validation():

    # Valid cases

    assert validate_year(2010) == True

    assert validate_year(1880) == True  # Boundary

    assert validate_year(2030) == True  # Boundary

    # Invalid cases

    assert validate_year(1879) == False  # Just below

    assert validate_year(2031) == False  # Just above

    assert validate_year("2010") == False  # Wrong type

    assert validate_year(None) == False   # Null

Edge cases are where bugs hide!

129



Common Validation MistakesCommon Validation Mistakes

Mistakes that let bad data slip through:

Mistake Example Better Approach

Only checking type isinstance(x, int) Also check range: 0 < x < 1000

Trusting "not None" if value: Empty string ""  is falsy but not None

Case sensitivity if status == "active" if status.lower() == "active"

Whitespace if name == "John" if name.strip() == "John"

Encoding Reading UTF-8 as ASCII Always specify encoding

Off-by-one year < 2024 Should it be <= 2024 ?

Rule of thumb: If something CAN go wrong, it WILL. Validate defensively.

130



Part 11: Building a Validation PipelinePart 11: Building a Validation Pipeline

Putting it all together

131



The Validation PipelineThe Validation Pipeline

Ingest → Inspect → Validate → Clean

↓

Reject invalid records

Stage Action Tools

1. Ingest Load raw data curl , requests

2. Inspect Profile and understand jq , csvstat , pandas

3. Validate Check against rules JSON Schema, Pydantic

4. Clean Fix and transform pandas, custom functions

132



Stage 1: IngestStage 1: Ingest

# Download or receive data

curl -o movies_raw.json "$API_URL"

# Check what we got

file movies_raw.json

wc -l movies_raw.json

head movies_raw.json | jq .

# Load with explicit encoding

import json

with open('movies_raw.json', encoding='utf-8') as f:

    movies = json.load(f)

print(f"Loaded {len(movies)} movies")

133



Stage 2: Inspect and ProfileStage 2: Inspect and Profile

# Quick profile with jq

cat movies.json | jq 'length'                           # Count

cat movies.json | jq '[.[].year] | unique | sort'       # Year range

cat movies.json | jq '[.[].rating | select(. == null)] | length'  # Null ratings

# Or with Python/pandas

df = pd.DataFrame(movies)

print(df.info())

print(df.describe())

print(df.isnull().sum())

134



Stage 3: Validate - Define SchemaStage 3: Validate - Define Schema

# 07_validation_pipeline.py - CleanMovie schema

from pydantic import BaseModel, Field

from typing import Optional, List

class CleanMovie(BaseModel):

    title: str = Field(..., min_length=1)

    year: int = Field(..., ge=1888, le=2030)

    rating: Optional[float] = Field(None, ge=0, le=10)

    revenue: Optional[int] = Field(None, ge=0)

    runtime_minutes: Optional[int] = None

    genres: List[str] = []

135



Stage 3: Validate - Run ValidationStage 3: Validate - Run Validation

# 07_validation_pipeline.py - validate_batch method

valid_movies = []

invalid_movies = []

for i, raw in enumerate(data):

    try:

        cleaned = transform_movie(raw)  # Transform first

        movie = CleanMovie(**cleaned)   # Validate with Pydantic

        valid_movies.append(movie)

    except (ValidationError, ValueError) as e:

        invalid_movies.append({'index': i, 'raw_data': raw, 'error': str(e)})

print(f"Valid: {len(valid_movies)}, Invalid: {len(invalid_movies)}")

136



Stage 4: Clean and TransformStage 4: Clean and Transform

# 07_validation_pipeline.py - transform_movie function

def transform_movie(raw: dict) -> dict:

    """Transform raw API data to clean format."""

    return {

        'title': raw.get('Title', raw.get('title', '')),

        'year': clean_year(raw.get('Year', raw.get('year'))),

        'rating': clean_rating(raw.get('imdbRating', raw.get('rating'))),

        'revenue': clean_revenue(raw.get('BoxOffice')),

        'runtime_minutes': clean_runtime(raw.get('Runtime')),

        'genres': clean_genres(raw.get('Genre')),

    }

137



Stage 4: Helper FunctionsStage 4: Helper Functions

# 07_validation_pipeline.py - cleaning functions

def clean_revenue(value):

    """Convert '$292,576,195' to 292576195"""

    if value is None or value == '' or value == 'N/A':

        return None

    cleaned = str(value).replace('$', '').replace(',', '')

    return int(cleaned) if int(cleaned) >= 0 else None

def clean_runtime(value):

    """Convert '148 min' to 148"""

    if value is None or value == '' or value == 'N/A':

        return None

    match = re.search(r'(\d+)', str(value))

    return int(match.group(1)) if match else None

138



Complete Pipeline Script (Part 1)Complete Pipeline Script (Part 1)

#!/bin/bash

# validate_movies.sh

INPUT=$1

OUTPUT_VALID="movies_valid.json"

OUTPUT_INVALID="movies_invalid.json"

echo "=== Stage 1: Ingest ==="

echo "Input file: $INPUT"

file "$INPUT"

cat "$INPUT" | jq 'length'

139



Complete Pipeline Script (Part 2)Complete Pipeline Script (Part 2)

echo -e "\n=== Stage 2: Profile ==="

cat "$INPUT" | jq '[.[].year | select(. == null)] | length'

cat "$INPUT" | jq '[.[].rating | select(. == null)] | length'

echo -e "\n=== Stage 3: Validate ==="

python validate.py "$INPUT" "$OUTPUT_VALID" "$OUTPUT_INVALID"

echo -e "\n=== Stage 4: Summary ==="

echo "Valid records: $(cat $OUTPUT_VALID | jq 'length')"

echo "Invalid records: $(cat $OUTPUT_INVALID | jq 'length')"

140



Pipeline OutputPipeline Output

=== Stage 1: Ingest ===

Input file: movies_raw.json

movies_raw.json: JSON data, UTF-8 Unicode text

1000

=== Stage 2: Profile ===

Null years: 13

Null ratings: 108

=== Stage 3: Validate ===

Processing 1000 movies...

Valid: 879, Invalid: 121

=== Stage 4: Summary ===

Valid records: 879

Invalid records: 121

141



Back to Netflix: Cleaned DataBack to Netflix: Cleaned Data

# Before cleaning

{"Title": "Inception", "Year": "2010", "imdbRating": "8.8",

 "BoxOffice": "$292,576,195", "Genre": "Action, Adventure, Sci-Fi"}

# After pipeline

{"title": "Inception", "year": 2010, "rating": 8.8,

 "revenue": 292576195, "genres": ["Action", "Adventure", "Sci-Fi"]}

Now we can train our model!

df = pd.DataFrame(cleaned_movies)

X = df[['year', 'rating']]  # Numeric columns

y = df['revenue']

model.fit(X, y)  # Works!

142



Part 12: Looking AheadPart 12: Looking Ahead

Lab preview and next week

143



This Week's LabThis Week's Lab

Hands-on Practice:

1. Unix inspection - head , tail , wc , file , sort , uniq

2. jq exercises - JSON querying and transformation

3. CSVkit - Profile and query CSV files

4. Pydantic deep dive - Nested models, custom validators

5. Build a pipeline - End-to-end validation of messy data

Goal: Take raw messy data and produce clean validated dataset.

144



Lab DatasetLab Dataset

You'll receive:

movies_raw.json  - 1000 movies with various quality issues

schema.json  - Partial schema (you'll complete it)

Issues to find and fix:

Missing values (null, "N/A", empty string)

Wrong types (numbers as strings)

Duplicates

Inconsistent formats

Outliers

145



Next Week PreviewNext Week Preview
Week 3: Data Labeling

Why labeling is the bottleneck

Labeling tools and platforms

Quality control for labels

Inter-annotator agreement

Managing labeling projects

The data we cleaned now needs labels for ML!

146



Interview QuestionsInterview Questions

Common interview questions on data validation:

1. "How would you handle missing values in a dataset?"

Identify types of missingness (MCAR, MAR, MNAR)

Strategies: deletion, imputation, flagging

Context matters: dropping vs filling depends on data and use case

2. "What's the difference between validation and cleaning?"

Validation: checking if data meets rules (returns true/false)

Cleaning: transforming data to meet rules (modifies data)

Validation should come first to understand the problems

147



Key TakeawaysKey Takeaways

1. Look before you process - Never trust raw data

2. Know your enemy - Understand types of data problems

3. Tools matter - jq, CSVkit, Pydantic save hours

4. Schema-first - Define expectations before processing

5. Validate at the boundary - Catch problems early

6. Fail fast - Don't propagate bad data

7. Use Pydantic - Pythonic validation with type hints

148



ResourcesResources

Tools:

jq: https://stedolan.github.io/jq/manual/

CSVkit: https://csvkit.readthedocs.io/

Pydantic: https://docs.pydantic.dev/

JSON Schema: https://json-schema.org/

Practice:

jq playground: https://jqplay.org/

149

https://stedolan.github.io/jq/manual/
https://csvkit.readthedocs.io/
https://docs.pydantic.dev/
https://json-schema.org/
https://jqplay.org/


Questions?Questions?

150



Thank You!Thank You!

See you in the lab!

151


