Data Validation & Quality

Week 2 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

Part 1: The Motivation

What did we actually collect?

Last Week: We Collected Data!

Remember our Netflix movie prediction project?

movies = []
title movie list:
response = requests.get(OMDB API, params={"t": title})
movies.append(response.json())

df = pd.DataFrame(movies)
df.to csv("netflix movies.csv")
print(f"Collected {len(df)} movies!")

Output: Collected 1000 movies!

Feeling: Victory! Time to train models!

Reality Check: Let's Look at the Data

pandas pd
df = pd.read csv("lecture-demos/week02/data/movies.csv")
print(df.head())

title runtime rating boxoffice genre rated
Inception 148 min 8.8 $292576195 Action, Adventure, Sci-Fi PG-13
Avatar 162 min 7.9 $2923706026 Action, Adventure, Fantasy PG-13
The Room 99 min 3.9 N/A Drama R

Inception 148 min 8.8 $292576195 Action, Adventure, Sci-Fi PG-13
Tenet 150 min 7.3 N/A Action, Sci-Fi, Thriller PG-13

Wait... something's wrong here.

The Problems Emerge

e e

1

2
3
4
o)

DUPLICATES
MISSING
WRONG TYPES
INCONSISTENT

N/A VALUES

Inception appears twice (rows 0 and 3)
Year is "N/A" for Tenet (row 4)

Runtime is "148 min" not integer 148
BoxOffice has "$" and commas

Some BoxOffice entries are literally "N/A"

Let's Dig Deeper

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 5 columns):

Column

Runtime
imdbRating
BoxOffice

Non-Null Count Dtype

1000 non-null
987 non-null
1000 non-null
892 non-null
634 non-null

Every column is a string (object)!
366 movies have no BoxOffice data!

All strings!

String, not int!

"148 min" string
String, not float!
"$292,576,195" string

What Happens If We Ighore This?

sklearn. linear model LinearRegression

df[['Year', 'Runtime', 'imdbRating']]
y df['BoxOffice']

model = LinearRegression()
model.fit (X, vy)

ValueError: could not convert string to float: '148 min'

The model refuses to train.

Or Worse: Silent Failures

df['Year'] = pd.to _numeric(df['Year'], errors='coerce')
df['Rating'] = pd.to numeric(df['imdbRating'], errors='coerce')

model.fit(df[['Year', 'Rating']].dropna(), y.dropna())

You trained on half your data without realizing.

Real-World Data Quality Disasters

NASA Mars Lockheed used pound-seconds, NASA expected newton- .
. $327 million spacecraft lost
Orbiter seconds
Knight Capital Old code reactivated on 1 of 8 servers during deployment $440 million in 45 minutes
UK COVID Stats Excel .xls format limited to 65,536 rows 16,000 cases unreported
500 million loss, program shut
Zillow iBuying Home price algorithm couldn't handle market volatility 3 Prog

down

Data quality is not optional. It's survival.

https://science.nasa.gov/mission/mars-climate-orbiter/
https://science.nasa.gov/mission/mars-climate-orbiter/
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://www.theregister.com/2020/10/05/excel_england_coronavirus_contact_error/
https://www.gsb.stanford.edu/insights/flip-flop-why-zillows-algorithmic-home-buying-venture-imploded

The Data Quality Pyramid

ML
MODELS

What we want to build

ANALYTICS
Insights & reports
VALIDATED DATA ‘
Schema-compliant
RAW DATA
What we collected

You can't skip layers. Each depends on the one below.

10

The Cost of Skipping Validation

The 1-10-100 Rule: It costs $1 to verify data at entry, $10 to fix it later, and $100 to recover from bad decisions
made with bad data.

Where do problems get discovered?

Data Entry $1 Validation rejects bad input
Processing $10 ETL* pipeline fails

Analysis $50 Analyst spots anomaly in report
Production $100+ Model makes bad predictions
Business Impact = $1000+ Wrong decisions based on flawed data

*ETL = Extract, Transform, Load - the process of moving data from sources to a destination (e.g., database or

data warehouse)

1
Earlier is always cheaper.

Today's Mission

Transform messy raw data into clean, validated data.

Tools we'll learn:

Unix commands: head , tail, wc, file, sort, uniq

jq: JSON processing powerhouse

CSVkit: CSV Swiss Army knife

JSON Schema: Language-agnostic data contracts

Pydantic: Pythonic data validation

Principle: Inspect before you trust. Validate before you use.

12

Part 2: Types of Data Problems

Know your enemy

13

A Taxonomy of Data Problems

Completeness Is all expected data present? Missing ratings, null values
Accuracy Is the data correct? Year 2099 for a 1999 movie
Consistency Does data agree across sources? "USA" vs "United States"
Validity Does data conform to rules? Rating of 15.0 (max is 10)
Uniqueness Are there duplicates? Same movie appears 3 times
Timeliness Is data up-to-date? Using 2019 prices in 2024

Let's see examples of each...

14

Problem 1: Missing Values

The data simply isn't there.

title,year, rating, revenue
Inception,2010,8.8,292576195

Avatar,2009,7.9,2923706026
The Room,2003,3.9,
Tenet,,7.3,363656624

Types of missingness:

Empty string: ""
Null/None: null in JSON

Sentinel value: "N/A" , "NULL" , -1, 9999

Missing key: Key doesn't exist in JSON

Why it matters: ML models can't handle missing values directly.
15

Problem 2: Wrong Data Types

Data exists but in wrong format.

"title": "Inception”,
"year": "2010",
"rating": "8.8",

"runtime": "148 min",
"released": "16 Jul 2010"

Common type issues:

Numbers stored as strings

Dates in various string formats

Booleans as "true"/"false"/"yes"/"no"/"1"/"O"

Lists stored as comma-separated strings

16

Problem 3: Inconsistent Formats

Same concept, different representations.

Date formats
2010-07-16
07/16/2010
16 Jul 2010
July 16, 2010

Currency formats
$292,576,195
292576195

$292.5M
292,576,195 USD

Boolean formats
true, True, TRUE, 1, yes, Yes, Y

Why it matters: Can't compare or aggregate inconsistent data.

Problem 4: Duplicates

Same record appears multiple times.

title,year, rating
Inception,2010,8.8
Avatar,2009,7.9

Inception,2010,8.8 <- Exact duplicate

The Matrix,1999,8.7

inception,2010,8.8 <- (Case variation duplicate
Inception,2010,8.9 <- Near duplicate (different rating?)

Types of duplicates:

e Exact: Identical in every field
 Partial: Same key, different values (which is correct?)

e Fuzzy: Similar but not identical ("Spiderman" vs "Spider-Man")

18

Problem 5:; Outliers and Anomalies

Values that are technically valid but suspicious.

title,year, rating, budget
Inception,2010,8.8,160000000
Avatar,2009,7.9,237000000

The Room,2003,3.9,6000000
Avengers,2012,8.0,-50000000 <- Negative budget?
Unknown,2025,9.9,999999999999 <- Future year, impossible rating

Questions to ask:

 |s this value within reasonable range?
 |s this value possible given business rules?

e |s this value consistent with other fields?

19

Problem 6: Encoding Issues

Text looks garbled or contains strange characters.

Expected: "Amelie"
Got: "AmAolie" <- UTF-8 read as Latin-1

Expected: "Japanese text"

Got: "E¥e-ed" <- Wrong encoding

Expected: "Zoe"
Got: "Zo\xeb" <- Raw bytes shown

Common encoding issues:

o UTF-8 vs Latin-1 (ISO-8859-1)
e Windows-1252 vs UTF-8
 BOM (Byte Order Mark) at file start

20

Problem 7: Schema Violations

Data structure doesn't match expectations.

{"title": "string", "year": "integer", "genres": ["string"]}

{"title": "Inception", "year": 2010, "genres": ["Sci-Fi", "Action"]}
{"title": "Avatar", "year": "2009", "genres": "Action"}

{"Title": "Matrix", "Year": 1999}

{"title": , "year": 2020, "genres": []}

Schema defines: Field names, types, required fields, constraints.

21

Summary: Data Problem Checklist

Question to Ask Tool to Detect

Missing Are there nulls/empty values? csvstat , pandas

Types Are numbers actually numbers? file , schema validation
Format Is date format consistent? grep , regex

Duplicates Are there repeated rows? sort , uniq, csvsql
Outliers Are values in valid range? csvstat , histograms
Encoding Is text readable? file , iconv

Schema Does structure match spec? JSON Schema, Pydantic

22

Part 3: First Look at Your Data

Unix tools for initial inspection

23

Demo Files Location

All demos use data from:

lecture-demos/week02/

I— data/

| | movies.csv 96 movies with quality issues
| |— movies.json # 25 movies with issues (JSON)
| }— movie.json # Single movie (OMDB format)

| L— movie schema.json # JSON Schema definition

— 01 unix inspection.sh # Unix CLI demos

— 02 jq basics.sh # jq JSON processing

— 03 csvkit demo.sh # CSVkit tools
— 04 json schema validation.py

— 05 pydantic basics.py

— 06 data profiling.py

L— 07 validation pipeline.py

Run demos from: cd lecture-demos/week02/data

Before You Do Anything: Look at the Data

Golden Rule: Never process data you haven't inspected.

file movies.csv

ls -1lh movies.csv
wCc -1 movies.csv

head movies.csv
tail movies.csv

These 5 commands should be muscle memory.

25

The Command

Tells you what type of file you're dealing with.

$ file movies.csv
movies.csv: UTF-8 Unicode text

$ file movies.json
movies.json: JSON text data

$ file movie.json

movie.json: JSON text data

$ file -1 movies.csv
movies.csv: text/plain; charset=utf-8

Reveals: Text encoding, line endings, file format

The [ff§ Command

Word count - but more useful for lines and characters.

$ wC movies.csv
496 6847 movies.csv

I
+-- bytes

$ wc -1 movies.csv
97 movies.csv

$ wc -1 movies.json
27 movies.json

Quick sanity check: Does line count match expectations?

The [[IXl:) Command

See the first N lines of a file.

$ head -5 movies.csv

title,year, runtime, rating,boxoffice,genre, rated

Inception,2010,148 min,8.8,%$292576195, “Action, Adventure, Sci-Fi",PG-13
Avatar,2009,162 min,7.9,$2923706026, "Action, Adventure, Fantasy",PG-13
The Room,2003,99 min,3.9,N/A,Drama,R

Inception,2010,148 min,8.8,%$292576195, "Action, Adventure, Sci-Fi",PG-13

$ head -3 movies.json

[
{"Title": "Inception", "Year": "2010", ...},
{"Title": "Avatar", "Year": "2009", ...},

Use case: Quickly see headers and sample data.

The Command

See the last N lines of a file.

$ tail -5 movies.csv
Blackfish,2013,83 min,8.1,$2073582, "Documentary, Drama",PG-13
The Cove,2009,92 min,8.4,$864000,Documentary,PG-13

An Inconvenient Truth,2006,96 min,7.4,$50000000,Documentary, PG

March of the Penguins,2005,80 min,7.5,%$127400000, "Documentary, Family",G

$ tail -n +2 movies.csv | head -3

Use case: Check if file ends properly, skip headers.

29

Combining head and tail

See a slice of the file:

$ head -110 movies.csv | tail -11

$ head -1 movies.csv && sed -n '500,510p' movies.csv

Practical example:

$ head -500000 huge.csv | tail -10

30

The Command

Sort lines alphabetically or numerically.

$ tail -n +2 movies.csv | sort -t',' -kl | head -5

$ tail -n +2 movies.csv | sort -t',' -k2 -nr | head -5
Tenet,N/A,150 min,7.3,N/A, ...
Future Movie,2030,120 min, ...
Unknown Movie,2025,90 min, ...

31

Flags

[Joeamy

-t Field delimiter is comma
-k3 Sort by 3rd field

-n Numeric sort

- Reverse (descending)
-u Remove duplicates

-t',' -k3 -nr -u movies.csv

32

The Command

Find or remove duplicate lines.

$ sort movies.csv | uniq

$ sort movies.csv | uniqg -c

Important: uniq only detects adjacent duplicates. Always sort first!

33

Options

m What it shows

(none) Deduplicated lines

-C Count of each line
-d Only duplicated lines
-u Only unique lines (appear once)

$ sort movies.csv | uniq -d

34

Finding Duplicates: Practical Example

$ cut -d'," -fl movies.csv | sort | uniq -d
Inception

Spider-Man

The Matrix

B85

Counting Duplicates

$ cut -d',"' -fl movies.csv | sort | uniq -c | sort -rn | head -5
3 Spider-Man
2 The Matrix
2 Inception
1 Your Name
1 WALL-E

Found 3 duplicate titles! (Spider-Man appears 3x, others 2x)

36

The Command

Extract columns from delimited data.

$ cut -d',"' -f1 movies.csv | head -5
title

Inception

Avatar

The Room

Inception

$ cut -d'," -fl,4 movies.csv | head -5
title, rating

Inception, 8.8

Avatar,7.9

The Room, 3.9

The Command

Search for patterns in text.

$ grep "Inception" movies.csv
Inception,2010,148 min,8.8,%$292576195, "Action, Adventure, Sci-Fi",PG-13
Inception,2010,148 min,8.8,%$292576195, "Action, Adventure, Sci-Fi",PG-13

$ grep -c "N/A" movies.csv
15

38

Options

Copion cteet

-C Count matches

-n Show line numbers

-V Invert (lines NOT matching)
-i Case insensitive

$ grep -n "N/A" movies.csv | head -5

$ grep -1 "matrix" movies.csv
The Matrix,1999,136 min,8.7,%463517383, "Action, Sci-Fi",R
The Matrix,1999,136 min,8.7,%$463517383, "Action, Sci-Fi",R

39

Putting It Together: Initial Inspection

file movies.csv && wc -1 movies.csv && head -3 movies.csv

“N/A values: $(grep -c 'N/A' movies.csv)"
“"Empty fields: $(grep -c ',,' movies.csv)"
"“Duplicates: $(cut -d',"' -fl movies.csv | sort | uniq -d | wc -1)"

See full script: lecture-demos/week02/inspect data.sh

40

Part 4: jg - JSON Processing

The Swiss Army knife for JSSON

41

JSON is everywhere:

APl responses

Configuration files

Log files
NoSQL databases

Problem: JSON is hard to read and process in shell.

$ cat movies.json
{"Title":"Inception","Year":"2010","Rated":"PG-13","Released":"16 Jul 2010","Runtime":"148 min", "Genre":"Action, Adventure, Sci-Fi"}

Solution: jq - alightweight JSON processor.

42

The jg Mental Model

Think of jg as a pipeline: Data flows in, gets transformed, flows out. Each filter transforms the data for the
next filter.

Input JSON --> Filter 1 --> Filter 2 --> Filter 3 --> OQutput
.movies .[0] title "Inception”

(whole doc) (get field) (first elem) (get title)

Key concepts:

e . = current data (identity)

e | = pipe to next filter

[1 = iterate over array

.field = access object field

43
jq is like SQL for JSON - query and transform in one line.

jq Basics: Pretty Printing

cat movie.json | jq .

"Title": "Inception",

"Year": "2010",

"Rated": "PG-13",

"Runtime": "148 min",

"Genre": "Action, Adventure, Sci-Fi",
"Director": "Christopher Nolan",
"imdbRating": "8.8",

"BoxOffice": "$292,576,195"

The . isthe identity filter - it means "the whole input".

jq: Extracting Fields

$ cat movie.json | jq '.Title'
“"Inception”

$ cat movie.json | jq '.Title, .Year'
"Inception"
1] 2010"

$ cat movie.json | jg '.Ratings[O]"
{"Source": "Internet Movie Database", "Value": "8.8/10"}

Syntax: .fieldname extracts that field.

jq: Working with Arrays

$ cat movies.json | jg 'length’
25

$ cat movies.json | jgq '.[O]"
{"Title": "Inception", "Year": "2010", "Runtime": "148 min",

$ cat movies.json | jgq '.[].Title' | head -5
"Inception”

“Avatar"

"The Room"

“Inception”

jo: The Array Iterator [}

$ cat movies.json | jgq '.[]'

{"Title": "Inception", "Year": "2010"}
{"Title": "Avatar", "Year": "2009"}
{"Title": "The Matrix", "Year": "1999"}

$ cat movies.json | jq '.[].Title'
"Inception"

"Avatar"

"The Matrix"

$ cat movies.json | jq

The pipe | passes output to next filter.

jq: Building New Objects

$ cat movies.json | jg '.[:3]1 | .[] | {name: .Title, year: .Year, rating: .imdbRating}'
{"name": "Inception", "year": "2010", "rating": "8.8"}

{"name": "Avatar", "year": "2009", "rating": "7.9"}

{"name": "The Room", "year": "2003", "rating": "3.9"}

$ cat movies.json | jq '[.[:3][] | {name: .Title, year: .Year}]'

[

{"name": "Inception", "year": "2010"},
{"name": "Avatar", "year": "2009"},
{"name": "The Room", "year": "2003"}

jq: Filtering with

$ cat movies.json | jg '.[] | select(.Year == "N/A") | .Title'
"Tenet"

$ cat movies.json | jq '.[] | select(.BoxOffice == "N/A") | .Title'’
"The Room"

"Tenet”

"Old Silent Film"

$ cat movies.json | jq '.[] | select(.Title == null or .Title == "")'

jq: Type Conversion

Remember: API data often has nhumbers as strings!

$ echo '{"Year": "2010"}' | jgq '.Year | tonumber’
2010

$ cat movies.json | jg '[.[] | select(.Year != "N/A" and .Year != null) | {title: .Title, year: (.Year | tonumber)}] |
[

{"title": "Inception", "year": 2010},

{"title": "Avatar", "year": 2009},

jq: Handling Missing Data

$ echo '{"title": "Test"}' | jq '.rating // "N/A"'
IIN/AII

$ cat movie.json | jq 'has("BoxOffice")'

$ cat movie.json | jq 'has("Budget")'

$ cat movies.json | jq '[.[] | select(.imdbRating != null and .imdbRating != "N/A")] | length'
23

jq: Aggregation Functions

$ cat movies.json | jg 'length’
25

$ cat movies.json | jg '[.[].Rated] | unique'’
[IINRII' IINO.t Ratedll’ IIPGII' IIPG_13II’ IIRII’ IIXXII]

$ cat movies.json | jgq 'group by(.Rated) | map({rated: .[0].Rated, count: length})"
|

{"rated": "NR", "count": 1},

{"rated": "PG", "count": 2},

{"rated": "PG-13", "count": 9},

jq: Sorting

$ cat movies.json | jq '[.[] | select(.Year != "N/A")] | sort by(.Year) | .[:5] | .[].Title'
“The Matrix"

"Amelie"
“Spider-Man"

$ cat movies.json | jq '[.[] | select(.Year != "N/A")] | sort by(.Year) | reverse | .[:5] | .[1 | "\(.Title) (\(.Year))"
"Unknown Movie (2025)"

"Avengers: Endgame (2019)"
“Parasite (2019)"

jq: Grouping

cat movies.json | jq 'group by(.Year)'

[{"Title": "The Matrix", "Year": "1999"}],
[{"Title": "Avatar", "Year": "2009"}],
[{"Title": "Inception", "Year": "2010"}, {"Title": "Toy Story 3", "Year": "2010"}]

cat movies.json | jq 'group by(.Year) | map({year: .[0].Year, count: length})'

{"year": "1999", "count": 1},
{"year": "2009", "count": 1},
{"year": "2010", "count": 2}

jg: Raw Output Mode

$ cat movies.json | jg -r '.[0:3][].Title"’
Inception

Avatar

The Room

$ cat movies.json | jq -r '.[:5][] | [.Title, .Year, .imdbRating] | @csv'
"Inception","2010","8.8"

"Avatar","2009","7.9"
"The Room","2003","3.9"

jq: Finding Data Issues

$ cat movies.json | jg '[.[] | select(.Year == "N/A")] | length'’
1

$ cat movies.json | jq '.[] | select(.Title == null or .Title == "") | .Year'
1] 2020"

"2018"

$ cat movies.json | jg '.[] | select(.imdbRating == "invalid") | .Title'
"Joker"

jq: Data Quality Checks

cat movies.json | jq 'A{

total: length,

null titles: [.[] | select(.Title == null or .Title == "")] | length,
na years: [.[] | select(.Year == "N/A")] | length,

na boxoffice: [.[] | select(.BoxOffice == "N/A")] | length

“total": 25,
"null titles": 2,
“na years": 1,
"na boxoffice": 3

jq Cheat Sheet - Basics

Pretty print J
Get field jq '.fieldname'
Get nested jg '.a.b.c'

Array element jq e
All elements ja

Filter iq '.[1 | seliccEEna =i

58

jq Cheat Sheet - Advanced

Build object jgq '{a: . ¢ bR

Count jq 'length’
Sort jq 'sort by(.field)"
Unique jq 'unique'

Raw strings jg =l

59

Part 5;: CSVkit

The CSV Swiss Army Knife

60

Why CSVKkit?

CSV looks simple but hides complexity:

Quoted fields with commas inside

Multiline values

Different delimiters

Inconsistent escaping

CSVKkit: A suite of command-line tools for CSV files.

pip install csvkit

Tools we'll cover:
csvlook , csvstat, csvcut, csvgrep, csvsort, csvjson, csvsql

61

csviook: Pretty Print CSV

Makes CSV readable in terminal.

csvlook movies.csv | head -7

EELS runtime | boxoffice

INCEEE
2010 148 min . $292576195 Action, Adventure, Sci-Fi |
2009 162 min . $2923706026 Action, Adventure, Fantasy|

Inception
Avatar

2010 148 min . $292576195 Action, Adventure, Sci-Fi |
N/A 150 min . N/A Action, Sci-Fi, Thriller |

Inception
Tenet

I
I
The Room | 2003 99 min . N/A Drama | R
I
I

Compare to raw CSV - much easier to read!

62

csvstat: Data Profiling

Get statistics for every column automatically!

$ csvstat -c title movies.csv
1. "title"

Type of data: Text

Contains null values: True

Unique values: 92

Longest value: 29 characters

Most common values: Spider-Man (3x)
The Matrix (2x)
Inception (2x)

$ csvstat --count movies.csv
96

csvstat: Specific Columns

$ csvstat -c rating movies.csv
3. "rating"

Type of data: Number
Contains null values: True (108 nulls)
Smallest value: 1.2
Largest value: 9.3
Mean: 6.84
Median: 7.1
StDev: 1.23

$ csvstat -c year,rating movies.csv

$ csvstat --count movies.csv

csvcut: Select Columns

$ csvcut -n movies.csv
1: title
: year
: runtime
: rating
: boxoffice
: genre
: rated

$ csvcut -c title,year movies.csv | head -6
title,year

Inception, 2010

csvgrep: Filter Rows

csvgrep -c year -m "2019" movies.csv | csvlook

csvgrep -c title -r "“The" movies.csv | csvcut -c title | head -10

csvgrep -c boxoffice -m "N/A" -i movies.csv | wc -1

csvgrep -c rating -r "~N/A$" movies.csv | csvlook

csvsort: Sort Data

$ csvsort -c year movies.csv | head -6

$ csvsort -c rating -r movies.csv | head -6

$ csvsort -c year,rating movies.csv | head -10

csvjson: Convert to JSON

$ head -4 movies.csv | csvjson | jgq '.'

[
{"title": "Inception", "year": "2010", "runtime": "148 min", ...},
{"title": "Avatar", "year": "2009", "runtime": "162 min", ...},
{"title": "The Room", "year": "2003", "runtime": "99 min", ...}

$ head -3 movies.csv | csvjson -i 2

Great for converting between formats!

csvsql: Query CSV with SQL!

Yes, you can run SQL on CSV files.

csvsql --query "SELECT title, rating FROM movies WHERE rating > 8.5 ORDER BY rating DESC" movies.csv | csvlook

csvsql --query "SELECT title, COUNT(*) as count FROM movies GROUP BY title HAVING count > 1" movies.csv | csvlook

Inception
Spider-Man |
The Matrix |

csvsql: Data Validation Queries

$ csvsql --query "SELECT year, COUNT(*) as count FROM movies GROUP BY year ORDER BY count DESC LIMIT 5" movies.csv | csvlook

$ csvsql --query "SELECT year, COUNT(*) as missing FROM movies WHERE boxoffice = 'N/A' GROUP BY year ORDER BY missing DESC LIMIT 5" movies.csv | csvlook

70

csvclean: Fix Common Issues

$ csvclean -n movies.csv
(no 1issues found)

CSVKkit Pipeline Example

$ csvcut -c title,rating,genre movies.csv \
csvgrep -c rating -r "7[0-9]" \
csvsort -c rating -r \
head -10 \
csvlook

"Total rows: $(csvstat --count movies.csv)"

"Unique titles: $(csvcut -c title movies.csv | tail -n +2 | sort -u | wc
“N/A in boxoffice: $(csvgrep -c boxoffice -m '‘N/A' movies.csv | wc -1)"
"N/A in rating: $(csvgrep -c rating -m 'N/A' movies.csv | wc -1)"

CSVkit Cheat Sheet - Core Tools

Pretty print

csvlook

csvstat

csvcut

csvgrep

csvsort

Statistics
Select columns
Filter rows

Sort

csvlook

csvstat

csvcut

csvgrep

csvsort

data.csv

-c column data.csv

-c coll,col2 data.csv

-c col -m "value"

-c col -r data.csv

73

CSVkit Cheat Sheet - Advanced Tools

oo rupose b

To JSON

csvjson
csvsql
csvclean
csvjoin

csvstack

SQL queries
Fix issues
Join files

Concatenate

csvjson data.csv
csvsql --query "..."
csvclean data.csv

csvjoin -c id a.csv b.csv

csvstack a.csv b.csv

74

Part 6: Data Profiling

Understanding your data before using it

75

What is Data Profiling?

Data profiling = Analyzing data to understand its structure, content, and quality.

Questions to Ask

Structure How many rows? Columns? What types?

Completeness How many nulls per column?

Uniqueness How many distinct values? Duplicates?
Distribution Min, max, mean, median? Outliers?
Patterns What formats are used? Any anomalies?

76

Profiling Step 1: Basic Shape

$ head -1 movies.csv | tr '," '
7

$ wc -1 movies.csv
97

$ csvstat --count movies.csv
96

First sanity check: Does shape match expectations?

Profiling Step 2: Column Types

$ csvstat movies.csv 2>&1 | grep "Type of data"

Type
Type
Type
Type
Type

of data:
of data:
of data:
of data:
of data:

Text
Number
Number
Number
Text

78

Profiling Step 3: Null Analysis

$ csvstat movies.

Contains

Contains

Contains

Contains

Results:

csv 2>&1 | grep -Al "Contains null"

null values: False

null values: True (13 nulls)

null values: True (108 nulls)

null values: True (366 nulls)

Title: 0 nulls (good!)

Year: 13 nulls (1.3%)

Rating: 108 nulls (10.8%)

Revenue: 366 nulls (36.6%) - problem!

79

Profiling Step 4: Unique Values

$ csvstat movies.csv 2>&1 | grep "Unique values"
Unique values: 987
Unique values: 85
Unique values: 78
Unique values:

$ csvstat movies.csv 2>&1 | grep -A5 "Most common values"

80

Profiling Step 5: Value Ranges

$ csvstat -c year movies.csv
Smallest value:
Largest value:
Mean:
Median:
StDev:

$ csvsort -c year movies.csv | head -5
$ csvsort -c year -r movies.csv | head -5

Profiling Step 6: Pattern Detection

$ csvcut -c rating movies.csv | sort | uniq -c | sort -rn | head
892 (valid numbers 1.0-10.0)
47 N/A
38
23 Not Rated

This is why automated profiling misses things!

Profiling Summary: Movies Dataset

I I

title
year
rating
revenue

genre

Key findings:

Text
Int
Float
Int

Text

13
108
366
0

85
78
634
23

13 duplicates
1920-2024 range

"N/A", empty, "Not Rated"
36% missing!

Multi- value ("Action, Drama")

1. Revenue is missing for 1/3 of movies

2. Rating has multiple representations of "missing"

3. There are 13 duplicate titles

4. Genre contains multiple values in one field

83

Part 7: Schema Validation

Contracts for your data

84

What is a Schema?

Schema = A formal description of expected data structure.

Field names What columns/keys should exist?
Data types String, integer, float, boolean, array?
Constraints Required? Min/max? Pattern? Enum?
Relationships References to other data?

Analogy: A schema is like a contract between data producer and consumer.

85

Schema: The Blueprint Analogy

Schema = Blueprint: Before construction, everyone agrees on what to build. The blueprint defines structure -
and the building must match.

Without Schema With Schema

Builder guesses what's needed Clear expectations upfront
Can't verify if correct Automatic verification
Inconsistent decisions Everyone builds the same

Problems found when it breaks ~ Problems caught early

86

Why Schemas Matter

Without schema:

data = {"yr": 2010, "rt": "8.8", "ttl": "Inception"}

With schema:

schema =

“title": {"type": "string", "required": },
"vear": {"type": "integer", "minimum": 1880, "maximum": 2030},

Schemas enable:

Automatic validation

Documentation

Code generation
87

Early error detection

JSON Schema: The Standard

JSON Schema is a vocabulary for validating JSON data.

"$schema": "https://json-schema.org/draft/2020-12/schema",
“type": "object",
“properties": {
"title": {
"type": "string",
"minLength": 1
},
"yvear": {
“type": "integer",
"minimum": 1880,
“maximum": 2030
s
"rating": {
"type": "number",
"minimum": 0,

JSON Schema: Type Keywords

“type": "string" “hello" , ""
"type": "integer" 42, -1, 0
"type": "number" 3.14, 42, -1.5
"type": "boolean" true , false
"type": "null" null

"type": "array" [1, 2ueain 4l
"type": "object" {"a" g, ik

Multiple types:

{"type": ["string", "null"]}

89

JSON Schema: String Constraints

“type": "string",
"minLength": 1,
"maxLength": 100,
"pattern": "~[A-Z].*$",
"format": "email"

Common formats:

e "email" - Email address

» "date" -1SO 8601 date (2010-07-16)
e "date-time" -1SO 8601 datetime
"uri" - Valid URI

e "uyuid" - UUID format

90

JSON Schema: Number Constraints

"type": "number",
"minimum": O,
"maximum": 10,
"exclusiveMinimum": 0O,
"exclusiveMaximum": 10,
"multipleOf": 0.1

Example for rating:

"type": "number",

"minimum": 0,

"maximum": 10,

"multipleOf": 0.1
}

JSON Schema: Arrays

"genres": {
"type": "array",
“items": {"type": "string"},
"minItems": 1,
"maxItems": 10,
"uniqueltems"”:

}

Ccomors g

items Schema for each element
minItems Minimum array length
maxItems Maximum array length

uniqueltems No duplicates allowed

92

JSON Schema: Enums

Restrict to specific values:

{
"rated": {

“type": "string",

IIenumll: [IIGII’ IIPGII' IIPG_13II’ IIRII’ IINC_17II’ IINO-t Ratedll]

Validation result:

e "PG-13" - Valid

e "PG13" - Invalid (notin enum)

e "M" - |nvalid (notin enum)

9

JSON Schema: Required Fields

{

“type": "object",

"properties": {
"title": {"type": "string"},
“yvear": {"type": "integer"},
"rating": {"type": "number"},
"revenue": {"type": "integer"}

b

"required": ["title", "year"]

}

Validation:

{"title": "X", "year": 2010} - Valid (rating, revenue optional)

{"title": "X"} - Invalid (missing required field: year)

94

Complete Movie Schema Example

“type": "object",
“properties": {
"title": {"type": "string", "minLength": 1},
"yvear": {"type": "integer", "minimum": 1888, "maximum": 2030},
"rating": {"type": ["number", "null"], "minimum": O, "maximum": 10},
"genres": {"type": "array", "items": {"type": "string"}},
"rated": {"enum": ["G", "PG", "PG-13", "R", "NC-17", "Not Rated"]}
}

"required": ["title", "year"]

Full schema: cat data/movie schema.json | jq

Validating with Python

jsonschema validate, ValidationError

schema = {
“type": "object",
“properties": {
"title": {"type": "string"},
"year": {"type": "integer", "minimum": 1880}
},

"required": ["title", "year"]

movie = {"title": "Inception", "year": 2010}

Schema-First Development

Traditional approach:

1. Collect data
2. Write code to process it

3. Discover problems in production

Schema-first approach:
1. Define schema (contract)
2. Validate data against schema on ingestion

3. Reject invalid data early

4. Process only valid data

97

Part 8: Pydantic

Pythonic data validation

98

Why Pydantic?

JSON Schema limitations:

Separate from your Python code

No IDE autocompletion

Manual validation calls

Verbose error handling

Pydantic advantages:

Uses Python type hints (you already know this!)

Automatic validation on object creation

IDE support (autocomplete, type checking)

Clear, readable error messages

Used by FastAPI, LangChain, and many modern libraries
99

Pydantic: Basic Model

pydantic BaseModel

Movie(BaseModel) :
title: str
year: int
rating: float

movie = Movie(title="Inception", year=2010, rating=8.8)
print(movie.title)
print(movie.year)

Key insight: Just define a class with type hints. Pydantic does the rest.

Pydantic: The Immigration Officer Analogy

Think of Pydantic like an immigration officer: Before entering the country (your code), your documents (data)
are checked. Wrong passport type? Rejected. Missing visa? Rejected. Once you're through, everyone inside is
guaranteed to have valid documents.

Movie(BaseModel) :
title: str
year: int
rating: float

movie = Movie(**raw data)

print(movie.year + 1)

No more "is this a string or int?" questions inside your code.

Pydantic: Automatic Type Coercion

movie = Movie(title="Inception", year="2010", rating="8.8")
print(movie.year)
print(movie.rating)

movie = Movie(title="Inception", year="not a year", rating=8.8)

Principle: Be strict about structure, flexible about representation.

102

Pydantic: Validation Errors

pydantic ValidationError

movie = Movie(title="", year=2010, rating=8.8)
ValidationError e:
print(e)

1 validation error for Movie
title
String should have at least 1 character [type=string too short]

Errors are clear: Field name, what's wrong, and why.

Pydantic: Field Constraints

pydantic BaseModel, Field

Movie(BaseModel):
title: str = Field(min length=1)
year: int = Field(ge=1880, 1e=2030)
rating: float = Field(ge=0, le=10)
revenue: int | =

Movie(title="X", year=1850, rating=8.0)

Pydantic: Optional and Default Values

pydantic BaseModel
typing Optional

Movie(BaseModel):
title: str
year: int
rating: Optional[float] =
genres: list[str] = []
is released: bool =

movie = Movie(title="Tenet", year=2020)
print(movie.rating)

print(movie.genres)

print(movie.is released)

Pydantic vs JSON Schema

Language JSON (separate file) Python (in your code)
Type hints No Yes

IDE support Limited Full autocomplete
Validation Manual call Automatic on create
Error messages Technical Human-readable
Learning curve New syntax Just Python

Recommendation: Use Pydantic for Python projects, JSON Schema for APls/cross-language.

106

Pydantic: The Mental Model

1. DEFINE class Movie(BaseModel): ... Declare your schema with type hints
2. CREATE movie = Movie(**raw data) Validation happens automatically
3. USE movie.title , movie.year + 1 Data is guaranteed valid

At step 2, one of two things happens:

e Valid data - Object created, ready to use

e Invalid data - ValidationError raised immediately

107

Pydantic: Practical Example

pydantic BaseModel, Field
typing Optional

MovieFromAPI (BaseModel):
“""Validates movie data from OMDB API."""
Title: str = Field(min length=1)
Year: str
imdbRating: Optional[str] =
BoxOffice: Optional[str] =

raw = {"Title": "Inception"”, "Year": "2010", "imdbRating": "8.8"}
movie = MovieFromAPI(**raw)

What We'll Cover in Lab

Pydantic deep dive:

Nested models (Movie with Director, Actors)

Custom validators (@validator decorator)

Parsing JSON files with Pydantic

Model serialization (.model dump() , .model dump json())

Strict mode vs coercion mode

The lab is where you'll get hands-on practice!

109

Part 9: Encoding & Edge Cases

When text isn't just text

10

The Encoding Problem

Computers store text as numbers. But which humbers?

Character 'A' = 65 (ASCII)
Character 'e' with accent = ??? (depends on encoding!)

Encoding = The mapping between characters and bytes.

ASCII 128 English only

Latin-1 256 Western European

UTF-8 1,112,064 Everything (modern standard)
UTF-16 Same as UTF-8 Different byte format

Windows-1252 256 Microsoft's Latin-1 variant

m

UTF-8: The Modern Standard

UTF-8 is the dominant encoding for the web and modern systems.

Why UTF-8?

Backwards compatible with ASCI|

Supports all languages

Variable length (1-4 bytes per character)

Self-synchronizing

$ file movies.csv
movies.csv: UTF-8 Unicode text

$ file old data.csv
old data.csv: IS0-8859-1 text

12

Encoding Problems in Practice

What you expect:

Amelie (with accent)
Crouching Tiger, Hidden Dragon (Chinese title)

What you get:

AmAolie <- UTF-8 decoded as Latin-1

<- Wrong encoding

Common scenarios:

1. File saved in one encoding, read in another
2. Copy-paste from web with different encoding
3. Database with mixed encodings

4. Legacy systems using old encodings 13

Detecting Encoding

$ file -1 movies.csv
movies.csv: text/plain; charset=utf-8

$ pip install chardet
$ chardetect movies.csv
movies.csv: utf-8 with confidence 0.99

$ python -c "import chardet; print(chardet.detect(open('movies.csv','rb').read()))

{'encoding': 'utf-8', 'confidence': 0.99}

Converting Encodings

$ iconv -f IS0-8859-1 -t UTF-8 old file.csv > new file.csv
$ iconv -f WINDOWS-1252 -t UTF-8 windows file.csv > utf8 file.csv

$ iconv -1

Python approach:

open('file.csv', encoding='latin-1")
content = f.read()

open('file utf8.csv', 'w', encoding='utf-8')
f.write(content)

CSV Edge Cases: Quoting

What if your data contains commas?

title,year,description
Inception,2010,A mind-bending, complex thriller <- WRONG! Extra column
"Inception”,2010,"A mind-bending, complex thriller" <- Correct: quoted

What if your data contains quotes?

title,year,tagline

Say "Hello",2020,A movie about "greetings" <- WRONG!
"Say ""Hello""",2020,"A movie about ""greetings""" <- Correct: escaped

Rule: Fields with commas, quotes, or newlines must be quoted.

116

CSV Edge Cases: Line Endings

Different systems use different line endings:

Unix/Linux/Mac = LF \n (Ox0A)
Windows CRLF \r\n (OxOD Ox0A)
Old Mac CR \r (0x0D)

Problems occur when mixing:

$ file data.csv
data.csv: ASCII text, with CRLF line terminators

$ sed -1 's/\r$//' data.csv

$ dos2unix data.csv

CSV Edge Cases: Multiline Values

Values can contain newlines (if quoted):

title,year,plot
"Inception”,2010,"A thief who steals corporate secrets through dream-sharing
technology is given the inverse task of planting an idea into the mind

of a C.E.O."
"Avatar",2009,"A paraplegic Marine..."

This is valid CSV! But many simple parsers break.

Solution: Use proper CSV parsers (pandas, csvkit), not line-by-line reading.

118

CSV Edge Cases: Empty vs Null

What does this mean?

title,year, rating
Inception,2010,8.8
Avatar, 2009,

The Room,2003,""

1 8.8 Rating is 8.8
2 (nothing) Rating is null/missing
3 e Rating is empty string

Is empty string the same as null? Depends on your interpretation!

19

Handling Edge Cases: Best Practices

1. Always specify encoding explicitly:

pd.read csv('file.csv', encoding='utf-8")

2. Use proper CSV parsers:

CSV
open('file.csv') f:
reader = csv.reader(f)

fields = line.split(',")

120

Handling Edge Cases: Validation

3. Validate after reading:

df['year'].dtype == 'int64', "Year should be integer"
df['rating'].between(0, 10).all(), "Rating out of range"

4. Handle missing values explicitly:

df['year'] = pd.to numeric(df['year'], errors='coerce')

missing count = df['year'].isna().sum()
print(f"Converted {missing count} invalid years to NaN")

121

Part 10: Validation Principles

Best practices for data quality

122

Principle 1: Validate at the Boundary

Check data when it enters your system, not later.

External Data - Validation Layer - Your System

N
Invalid data rejected

Why?

* Invalid data doesn't spread through your system
» Easier to debug (you know exactly where it failed)

* Clear separation of concerns

123

Principle 2: Fail Fast

Stop immediately when you find invalid data.

movie movies:

process(movie)

movie movies:
validate(movie)
process(movie)

Benefits:

* Find problems early

* Don't waste time processing bad data

» Easier debugging

Principle 3: Be Explicit About Missing Data

Don't guess. Document and handle explicitly.

rating movie.get('rating', 0)

rating movie.get('rating')
rating
ValidationError("Rating is required")

rating :
rating = DEFAULT RATING

125

Principle 4: Validate Types AND Values

Type checking isn't enough.

validate year(year):
isinstance(year, int):
TypeError("Year must be integer")
year < 1880 year > 2030:
ValueError(f"Year {year} out of valid range")

Principle 5: Log Validation Failures

Keep records of what failed and why.

logging

validate movies(movies):
valid = []
i, movie enumerate(movies):

validate(movie)
valid.append(movie)

ValidationError e:
logging.warning(f"Row {i}: {e.message}

Why?

e Understand data quality trends
e Debug upstream issues

e Audit trail

Principle 6: Separate Validation from Cleaning

Two different operations:

Checks if datais valid Fixes invalid data

Returns true/false Modifies data
Should not modify Requires decisions
Objective Subjective

is valid year(year):
isinstance(year, int) 1880 <= year <= 2030

clean year(year str):
int(year str.strip())

128

Principle 7: Test Your Validation

Validation code needs tests too!

test year validation():
validate year(2010)

validate year(1880)
validate year(2030)

validate year(1879

()
validate year(2031)
validate year("2010"
validate year()

Edge cases are where bugs hide!

Common Validation Mistakes

Mistakes that let bad data slip through:

Only checking type isinstance(x, int) Also check range: 0 < x < 1000
Trusting "not None" if value: Empty string "" is falsy but not None
Case sensitivity if status == "active" if status.lower() == "active"
Whitespace if name == "John" if name.strip() == "John"
Encoding Reading UTF-8 as ASCII Always specify encoding

Off-by-one year < 2024 Should it be <= 2024 ?

Rule of thumb: If something CAN go wrong, it WILL. Validate defensively.

130

Part 11: Building a Validation Pipeline

Putting it all together

131

The Validation Pipeline

Ingest - Inspect -, Validate - Clean

N2
Reject invalid records
Sage ncin Tk
1. Ingest Load raw data curl , requests

2. Inspect Profile and understand jq , csvstat , pandas
3. Validate Check against rules JSON Schema, Pydantic

4. Clean Fix and transform pandas, custom functions

132

Stage 1: Ingest

curl -o movies raw.json "$API URL"

file movies raw.json

wc -1 movies raw.json
head movies raw.json | jq .

json
open('movies raw.json', encoding='utf-8'")
movies = json.load(f)
print(f"Loaded {len(movies)} movies")

Stage 2: Inspect and Profile

cat movies.json | jgq 'length’
cat movies.json | jqg '[.[].year] | unique | sort'
cat movies.json | jq '[.[].rating | select(. == null)] | length'

df = pd.DataFrame(movies)
print(df.info())
print(df.describe())

(

print(df.isnull().sum())

Stage 3: Validate - Define Schema

pydantic BaseModel, Field
typing Optional, List

CleanMovie(BaseModel):
title: str = Field(..., min length=1)
year: int = Field(..., ge=1888, 1e=2030)
rating: Optional[float] = Field(, ge=0, le=10)
revenue: Optional[int] = Field(, ge=0)
runtime minutes: Optional[int] =

genres: List[str] = []

Stage 3: Validate - Run Validation

valid movies = []
invalid movies = []

1, raw enumerate(data):

cleaned = transform movie(raw)
movie = CleanMovie(**cleaned)
valid movies.append(movie)
(ValidationError, ValueError) e:
invalid movies.append({'index': i, 'raw data': raw, 'error': str(e)})

print(f"Valid: {len(valid movies)}, Invalid: {len(invalid movies)}")

Stage 4: Clean and Transform

transform movie(raw: dict) -> dict:
"""Transform raw API data to clean format."""
{
'title': raw.get('Title', raw.get('title', '')),
‘year': clean year(raw.get('Year', raw.get('year'))),
‘rating': clean rating(raw.get('imdbRating', raw.get('rating'))),

‘revenue’': clean revenue(raw.get('Box0Office')),
‘runtime _minutes': clean runtime(raw.get('Runtime')),
clean genres(raw.get('Genre')),

‘genres':

Stage 4: Helper Functions

clean revenue(value):
"""Convert '$292,576,195' to 292576195"""
value value == "' value == 'N/A':

cleaned = str(value).replace('$', '').replace(',', "'")
int(cleaned) int(cleaned) >= 0

clean runtime(value):
“""Convert '148 min' to 148"""

value value == "' value == 'N/A':

= re.search(r'(\d+)', str(value))
int(.group(1))

Complete Pipeline Script (Part 1)

#!/bin/bash

INPUT=%$1
OUTPUT VALID="movies valid.json"
OUTPUT _INVALID="movies invalid.json"

echo "=== Stage 1l: Ingest ==="
echo "Input file: $INPUT"

file "$INPUT"

cat "$INPUT" | jq 'length'’

Complete Pipeline Script (Part 2)

echo -e "\n=== Stage 2:
cat "$INPUT" | jq '[.[].
cat "$INPUT" | jq '[.[].

echo -e "\n=== Stage 3:

Profile ===
year | select(. == null)] | length'’
rating | select(. == null)] | length'

Validate ==="

python validate.py "$INPUT" "$OUTPUT VALID" "$OUTPUT INVALID"

echo -e "\n=== Stage 4:

Summary ===

echo "Valid records: $(cat $OUTPUT VALID | jq 'length')”
echo "Invalid records: $(cat $OUTPUT INVALID | jq 'length')"

140

Pipeline Output

=== Stage 1: Ingest ===

Input file: movies raw.json

movies raw.json: JSON data, UTF-8 Unicode text
1000

=== Stage 2: Profile ===
Null years: 13
Null ratings: 108

=== Stage 3: Validate ===
Processing 1000 movies...
Valid: 879, Invalid: 121

=== Stage 4: Summary ===
Valid records: 879
Invalid records: 121

Back to Netflix: Cleaned Data

{"Title": "Inception", "Year": "2010", "imdbRating": "8.8",
"BoxOffice": "$292,576,195", "Genre": "Action, Adventure, Sci-Fi"}

{"title": "Inception", "year": 2010, "rating": 8.8,
"revenue": 292576195, "genres": ["Action", "Adventure", "Sci-Fi"]}

Now we can train our model!

df = pd.DataFrame(cleaned movies)
X = df[['year', 'rating'l]]

y = df['revenue']

model.fit (X, vy)

Part 12: Looking Ahead

Lab preview and next week

143

This Week's Lab

Hands-on Practice:

1. Unix inspection - head , tail, wc, file, sort, uniq
2. jq exercises - JSON querying and transformation

3. CSVkit - Profile and query CSV files

4. Pydantic deep dive - Nested models, custom validators

5. Build a pipeline - End-to-end validation of messy data

Goal: Take raw messy data and produce clean validated dataset.

144

Lab Dataset

You'll receive:

e movies raw.json -1000 movies with various quality issues

e schema.json - Partial schema (you'll complete it)

Issues to find and fix:

Missing values (null, "N/A", empty string)

Wrong types (numbers as strings)

Duplicates

Inconsistent formats

Outliers

145

Next Week Preview

Why labeling is the bottleneck

Labeling tools and platforms

Quality control for labels

Inter-annotator agreement

Managing labeling projects

The data we cleaned now needs labels for ML!

146

Interview Questions

Common interview questions on data validation:

1. "How would you handle missing values in a dataset?"

o |dentify types of missingness (MCAR, MAR, MNAR)
o Strategies: deletion, imputation, flagging

o Context matters: dropping vs filling depends on data and use case
2. "What's the difference between validation and cleaning?"

o Validation: checking if data meets rules (returns true/false)
o Cleaning: transforming data to meet rules (modifies data)

o Validation should come first to understand the problems

147

LCOAELCENWEVE

1. Look before you process - Never trust raw data

2. Know your enemy - Understand types of data problems
3. Tools matter - jg, CSVKkit, Pydantic save hours

4. Schema-first - Define expectations before processing
5. Validate at the boundary - Catch problems early

6. Fail fast - Don't propagate bad data

7. Use Pydantic - Pythonic validation with type hints

148

Resources

Tools:

jq: https://stedolan.github.io/jg/manual/
CSVKkit: https://csvkit.readthedocs.io/

Pydantic: https://docs.pydantic.dev/
JSON Schema: https://json-schema.org/

Practice:

e jq playground: https://jgplay.org/

149

https://stedolan.github.io/jq/manual/
https://csvkit.readthedocs.io/
https://docs.pydantic.dev/
https://json-schema.org/
https://jqplay.org/

Questions?

150

Thank You!

See you in the lab!

151

