
1

Data AugmentationData Augmentation
Week 5 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

Part 1: The Data Hunger ProblemPart 1: The Data Hunger Problem

More data from existing data

2

Previously on CS 203...Previously on CS 203...

Week 1: Collected 10,000 movie records from OMDB API

Week 2: Validated and cleaned the data

Week 3: Labeled 5,000 movies as "good" or "bad"

Week 4: Optimized labeling with active learning + weak supervision

Current state of our Netflix movie project

labeled_movies = 5000

model_accuracy = 0.82 # 82% accuracy

But Netflix wants 90%+ accuracy!

And we've exhausted our labeling budget...

Can we improve without more labeling?

3

The Data Hunger ProblemThe Data Hunger Problem

Deep learning models need data:

ResNet-50 trained on 1.2M ImageNet images

GPT-3 trained on 45TB of text

AlphaGo trained on 30M game positions

Your reality:

500 labeled images

1,000 text samples

100 audio clips

Solution: Create more data from existing data through augmentation

4

What is Data Augmentation?What is Data Augmentation?

Data Augmentation: Apply transformations to existing data to create new training examples

Key Idea: Generate variations that preserve the label but increase diversity

Example (Image):

Original: Cat image

Rotated 10°: Still a cat

Flipped horizontally: Still a cat

Slightly darker: Still a cat

Benefits:

More training data without labeling

Better generalization

Reduced overfitting
5

The Photographer AnalogyThe Photographer Analogy

Imagine you only have ONE photo of a cat to teach someone "what is a cat":

 One photo: Person might think "cat" means

 - This specific pose

 - This specific lighting

 - This specific background

 - This specific angle

 Many photos: Person learns

 - Cats can be in different poses

 - Cats look similar in different lighting

 - Cats can be anywhere

 - Cats look similar from different angles

Augmentation = Taking many "virtual photos" from one real photo!

6

Free Data: The Augmentation MagicFree Data: The Augmentation Magic

Before augmentation

original_dataset = 1000 # Labeled examples

training_epochs = 100

Each epoch: model sees 1000 examples (same ones!)

Model memorizes specific examples = OVERFITTING

After augmentation

augmented_dataset = 1000 * 10 # 10 variations each

training_epochs = 100

Each epoch: model sees 10,000 DIFFERENT examples!

Model learns general patterns = GENERALIZATION

10x more data for FREE (no labeling cost)!

7

Why Data Augmentation WorksWhy Data Augmentation Works

1. Implicit Regularization

Model sees slightly different versions

Learns robust features

Reduces overfitting

2. Invariance Learning

Model learns that rotations don't change identity

Small color shifts don't matter

Position in frame doesn't change class

3. Coverage of Data Distribution

Fills gaps in training data

Simulates real-world variations

T b

8

The Overfitting InsightThe Overfitting Insight

Overfitting happens when the model memorizes instead of learning. If you show the exact same images

every epoch, the model can just memorize "image #42 = cat". Augmentation forces the model to learn what

makes a cat a cat, not just memorize training images.

Without Augmentation: With Augmentation:

Epoch 1: [img1, img2, img3] Epoch 1: [img1_v1, img2_v3, img3_v2]

Epoch 2: [img1, img2, img3] Epoch 2: [img1_v4, img2_v1, img3_v7]

Epoch 3: [img1, img2, img3] Epoch 3: [img1_v2, img2_v5, img3_v4]

 ↓ ↓

Model memorizes exact pixels Model learns general patterns

Augmentation = Forcing the model to generalize

9

Data Augmentation vs Data CollectionData Augmentation vs Data Collection

Data Collection:

Time: Weeks to months

Cost: High (labeling, storage)

Effort: Manual collection and annotation

Diversity: Limited by budget

Data Augmentation:

Time: Minutes to hours

Cost: Low (just compute)

Effort: Automated transformations

Diversity: Programmatically generated

Best Practice: Do both! Augmentation complements collection.
10

Why Image Augmentation Works So WellWhy Image Augmentation Works So Well

Key insight: Geometric changes don't change what's in the image!

 Original: Flipped: Rotated:

 ┌─────────┐ ┌─────────┐ ┌─────────┐

 │ /_/\ │ │ /_/\ │ │ /_/\ │

 │ (o.o) │ -> │ (o.o) │ -> │ (o.o)│

 │ > ^ < │ │ > ^ < │ │ > ^ < │

 └─────────┘ └─────────┘ └─────────┘

 It's still a cat! The label doesn't change.

This is called "invariance" - the label is invariant to these transforms.

11

Image Augmentation: Geometric TransformsImage Augmentation: Geometric Transforms

Basic transformations:

1. Rotation: Rotate ±15-30 degrees

2. Horizontal Flip: Mirror image left-right

3. Vertical Flip: Mirror image top-bottom (use carefully)

4. Translation: Shift image by pixels

5. Scaling: Zoom in/out

6. Shearing: Skew image

7. Cropping: Random crops

Implementation with PIL:

from PIL import Image

img = Image.open('cat.jpg')

rotated = img.rotate(15)

flipped = img transpose(Image FLIP LEFT RIGHT)

12

The Movie Poster ExampleThe Movie Poster Example

For our Netflix movie poster classification

from PIL import Image

import albumentations as A

Original movie poster (e.g., for "Inception")

poster = Image.open("inception_poster.jpg")

label = "Sci-Fi/Thriller"

Augmented versions

transform = A.Compose([

 A.HorizontalFlip(p=0.5), # Poster still shows same movie

 A.RandomBrightnessContrast(p=0.3), # Like different lighting

 A.Rotate(limit=10), # Slight tilt

])

Same poster, 10 training examples!

13

Image Augmentation: Color TransformsImage Augmentation: Color Transforms

Color space adjustments:

1. Brightness: Make lighter/darker

2. Contrast: Increase/decrease contrast

3. Saturation: Make more/less colorful

4. Hue: Shift color spectrum

5. Grayscale: Convert to black and white

6. Color Jittering: Random color variations

from PIL import ImageEnhance

enhancer = ImageEnhance.Brightness(img)

brighter = enhancer.enhance(1.5) # 50% brighter

enhancer = ImageEnhance.Contrast(img)

higher_contrast = enhancer.enhance(1.3)
14

Image Augmentation: Advanced TechniquesImage Augmentation: Advanced Techniques

1. Cutout: Remove random patches

Remove 16x16 patch

x, y = random.randint(0, w-16), random.randint(0, h-16)

img[y:y+16, x:x+16] = 0

2. Mixup: Blend two images

lambda_val = np.random.beta(alpha, alpha)

mixed = lambda_val * img1 + (1 - lambda_val) * img2

label = lambda_val * label1 + (1 - lambda_val) * label2

3. CutMix: Replace patch with another image

4. AugMix: Apply multiple augmentations and mix

15

Albumentations LibraryAlbumentations Library

Fast and flexible image augmentation library

import albumentations as A

from albumentations.pytorch import ToTensorV2

transform = A.Compose([

 A.RandomRotate90(),

 A.Flip(),

 A.Transpose(),

 A.GaussNoise(),

 A.OneOf([

 A.MotionBlur(p=0.2),

 A.MedianBlur(blur_limit=3, p=0.1),

 A.Blur(blur_limit=3, p=0.1),

], p=0.2),

 A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2),

 A.OneOf([

 A.OpticalDistortion(p=0.3),

 A.GridDistortion(p=0.1),

] p 0 2)

16

Albumentations - Key FeaturesAlbumentations - Key Features

Why Albumentations?

1. Fast: Optimized with NumPy/OpenCV

2. Flexible: Easy to compose transformations

3. Framework-agnostic: Works with PyTorch, TensorFlow, etc.

4. Preserves Bounding Boxes: For object detection

5. Keypoint Support: For pose estimation

Common Augmentations:

Geometric: Rotate, Flip, Shift, Scale

Blur: Motion, Gaussian, Median

Noise: Gaussian, ISO, Salt & Pepper

Weather: Rain, Fog, Snow, Sun Flare

Advanced: Cutout, CoarseDropout
17

Image Augmentation Best PracticesImage Augmentation Best Practices

1. Choose Appropriate Augmentations

Natural images: Rotation, flip, color jitter

Medical images: Be careful with flips (anatomy matters)

Text/OCR: No rotation, no flip (orientation matters)

2. Augmentation Strength

Start mild, increase gradually

Too strong: Model learns wrong patterns

Too weak: No benefit

3. Validation Set

Don't augment validation/test data

Measure performance on real distribution 18

When NOT to AugmentWhen NOT to Augment

Be careful with:

1. Medical imaging: Artifacts can mislead diagnosis

2. OCR/Text: Rotation can make text unreadable

3. Fine-grained classification: Too much blur loses details

4. Small objects: Heavy cropping loses object

5. Asymmetric objects: Flips change meaning (e.g., left/right lung)

Rule: Only augment if transformation preserves label

19

The "6 vs 9" ProblemThe "6 vs 9" Problem

Classic augmentation mistake:

 Original: Flipped Vertically:

 ┌─────────┐ ┌─────────┐

 │ │ │ │

 │ 6 │ -> │ 9 │

 │ │ │ │

 └─────────┘ └─────────┘

 Label: "6" Label: Still "6"???

 NO! The label changed! This is WRONG!

Always ask: Does this transformation preserve the label?

20

Good vs Bad Augmentation ExamplesGood vs Bad Augmentation Examples

 GOOD AUGMENTATION:

 ┌──┐

 │ Task: Classify movie genres from posters │

 │ │

 │ Flip horizontal: Action movie is still action │

 │ Brightness change: Genre doesn't change │

 │ Small rotation: Poster still recognizable │

 └──┘

 BAD AUGMENTATION:

 ┌──┐

 │ Task: Read text from movie posters │

 │ │

 │ Flip horizontal: "STAR WARS" becomes "SRAW RATS" │

 │ Heavy rotation: Text becomes unreadable │

 │ Too much blur: Can't see letters │

21

Text Augmentation: OverviewText Augmentation: Overview

Challenges:

Discrete tokens (can't interpolate like pixels)

Semantic meaning matters

Grammar and syntax constraints

Approaches:

1. Rule-based: Synonym replacement, random operations

2. Back-translation: Translate to another language and back

3. Paraphrasing: LLMs generate paraphrases

4. Contextual: BERT-based word replacement

22

Text Augmentation: Movie Review ExampleText Augmentation: Movie Review Example

Original review from our Netflix dataset

original = "This movie was absolutely fantastic! Great acting."

label = "POSITIVE"

Augmented versions (all still POSITIVE)

augmented = [

 "This film was absolutely fantastic! Great acting.", # Synonym

 "This movie was really fantastic! Great acting.", # Synonym

 "This movie was absolutely amazing! Great acting.", # Synonym

 "This movie was fantastic! Excellent acting.", # Synonym

 "Ce film etait fantastique!" -> "This film was great!" # Back-translation

]

Now we have 6 training examples from 1!

All preserve the POSITIVE label

Text augmentation must preserve meaning AND sentiment!

23

The Paraphrase IntuitionThe Paraphrase Intuition

Humans express the same idea in many ways:

 "The movie was great!"

 "I really enjoyed this film!"

 "Fantastic movie, would recommend!"

 "Loved every minute of it!"

 "A truly wonderful cinematic experience!"

 All mean: POSITIVE sentiment

 Model should recognize ALL of these patterns!

Text augmentation teaches the model that different words can mean the same thing.

24

Text Augmentation: EDAText Augmentation: EDA

Easy Data Augmentation (EDA) - Simple but effective

4 Operations:

1. Synonym Replacement: Replace words with synonyms

"The movie was great" → "The film was excellent"

2. Random Insertion: Insert random synonyms

"I love this" → "I really love this"

3. Random Swap: Swap word positions

"She likes pizza" → "She pizza likes"

4. Random Deletion: Delete words randomly

"This is very good" → "This very good"

25

Text Augmentation with nlpaugText Augmentation with nlpaug

nlpaug: Comprehensive text augmentation library

import nlpaug.augmenter.word as naw

import nlpaug.augmenter.sentence as nas

Synonym replacement using WordNet

aug_syn = naw.SynonymAug(aug_src='wordnet')

text = "The quick brown fox jumps over the lazy dog"

augmented = aug_syn.augment(text)

print(augmented)

Output: "The fast brown fox jump over the lazy dog"

Contextual word embeddings (BERT)

aug_bert = naw.ContextualWordEmbsAug(

 model_path='bert-base-uncased',

 action="substitute"

)

augmented = aug_bert.augment(text)

Back translation

26

Text Augmentation: Back-TranslationText Augmentation: Back-Translation

Idea: Translate to another language and back

from transformers import pipeline

English → German → English

en_de = pipeline("translation", model="Helsinki-NLP/opus-mt-en-de")

de_en = pipeline("translation", model="Helsinki-NLP/opus-mt-de-en")

text = "I love machine learning"

german = en_de(text)[0]['translation_text']

back = de_en(german)[0]['translation_text']

print(f"Original: {text}")

print(f"German: {german}")

print(f"Back: {back}")

Output: "I love machine learning" → "Ich liebe maschinelles Lernen" → "I love machine learning"

Pros: Maintains meaning, natural variations

Cons: Expensive (requires translation models)

27

Text Augmentation: Paraphrasing with LLMsText Augmentation: Paraphrasing with LLMs

Use LLMs to generate paraphrases

from google import genai

import os

client = genai.Client(api_key=os.environ['GEMINI_API_KEY'])

def paraphrase(text, n=3):

 prompt = f"""

 Generate {n} paraphrases of the following text.

 Keep the same meaning but use different words.

 Return one paraphrase per line.

 Text: {text}

 """

 response = client.models.generate_content(

 model="models/gemini-2.0-flash-exp",

 contents=prompt

)

paraphrases = response text strip() split('\n')

28

Text Augmentation Best PracticesText Augmentation Best Practices

1. Preserve Label

Sentiment: Don't change positive to negative

NER: Keep entity boundaries

Classification: Maintain class meaning

2. Maintain Coherence

Avoid random operations that break grammar

Check that output is readable

3. Domain-Specific

Legal text: Minimal changes (meaning critical)

Social media: More aggressive OK (informal)

Code: Very careful (syntax matters) 29

Audio Augmentation: OverviewAudio Augmentation: Overview

Audio = Waveform + Spectrogram

Time Domain Augmentations:

Time stretching

Pitch shifting

Adding noise

Volume changes

Time shifting

Frequency Domain Augmentations:

SpecAugment

Frequency masking

Time masking

30

Audio Augmentation with audiomentationsAudio Augmentation with audiomentations

from audiomentations import Compose, AddGaussianNoise, TimeStretch, PitchShift

augment = Compose([

 AddGaussianNoise(min_amplitude=0.001, max_amplitude=0.015, p=0.5),

 TimeStretch(min_rate=0.8, max_rate=1.25, p=0.5),

 PitchShift(min_semitones=-4, max_semitones=4, p=0.5),

])

import librosa

Load audio

audio, sr = librosa.load('audio.wav', sr=16000)

Augment

augmented_audio = augment(samples=audio, sample_rate=sr)

31

SpecAugment for Speech RecognitionSpecAugment for Speech Recognition

SpecAugment: Augment spectrograms directly

Operations:

1. Time Masking: Mask consecutive time steps

2. Frequency Masking: Mask frequency channels

3. Time Warping: Warp time axis

import torch

from torchaudio.transforms import FrequencyMasking, TimeMasking

Convert to spectrogram

spectrogram = torchaudio.transforms.MelSpectrogram()(audio)

Apply augmentations

freq_mask = FrequencyMasking(freq_mask_param=30)

time_mask = TimeMasking(time_mask_param=100)

Used by: Google's speech recognition, Wav2Vec 2.0
32

Audio Augmentation: Common TechniquesAudio Augmentation: Common Techniques

1. Background Noise

from audiomentations import AddBackgroundNoise

augment = AddBackgroundNoise(

 sounds_path="/path/to/noise/files",

 min_snr_db=3,

 max_snr_db=30,

 p=1.0

2. Room Impulse Response

from audiomentations import ApplyImpulseResponse

augment = ApplyImpulseResponse(

 ir_path="/path/to/impulse/responses",

 p=0.5

)

3. Compression (MP3 artifacts)

4. Clipping (Simulate distortion)

5. Band-pass filters
33

Augly: Facebook's Augmentation LibraryAugly: Facebook's Augmentation Library

Unified API for images, audio, video, and text

import augly.image as imaugs

import augly.audio as audaugs

import augly.text as textaugs

Image

img_augmented = imaugs.augment_image(

 img,

 [

 imaugs.Blur(),

 imaugs.RandomNoise(),

 imaugs.Rotate(degrees=15),

]

)

Audio

audio_augmented = audaugs.apply_lambda(

 audio,

 aug_function=audaugs.add_background_noise,

 snr_level_db=10

)

34

Augly FeaturesAugly Features

Cross-Modal Augmentations:

Images:

Blur, brightness, contrast, noise

Overlay emoji, text, shapes

Meme generation

Pixel distortions

Audio:

Background noise, reverb, pitch shift

Clipping, speed, volume

Time stretch

Text:
35

Designing an Augmentation PipelineDesigning an Augmentation Pipeline

Step 1: Understand Your Task

Classification: Aggressive augmentation OK

Detection: Preserve bounding boxes

Segmentation: Transform masks too

Step 2: Start Simple

Baseline: No augmentation

Step 3: Gradually Increase

transform = A.Compose([

Step 4: Measure Impact

Track validation accuracy

Compare with/without each augmentation
36

Augmentation HyperparametersAugmentation Hyperparameters

Key parameters to tune:

1. Probability (p): How often to apply

Start: p=0.5

Increase if underfitting

Decrease if validation worse

2. Magnitude: Strength of transformation

Rotation: ±10° → ±30°

Brightness: ±10% → ±30%

3. Combination: How many augmentations together

Start: 1-2 at a time

Advanced: 3-5 at a time

Strategy: Grid search or random search 37

AutoAugment & RandAugmentAutoAugment & RandAugment

AutoAugment: Learn augmentation policy with RL

Problem: Manual tuning is tedious

Solution: Use RL to find best augmentation sequence

RandAugment: Simplified version

from torchvision.transforms import RandAugment

transform = RandAugment(

 num_ops=2, # Number of augmentations to apply

 magnitude=9 # Strength (0-30)

)

augmented = transform(image)

Policies learned on ImageNet work well on other datasets!

38

Test-Time Augmentation (TTA)Test-Time Augmentation (TTA)

Idea: Augment at inference time and average predictions

import albumentations as A

def tta_predict(model, image, n_augments=10):

 transform = A.Compose([

 A.HorizontalFlip(p=0.5),

 A.Rotate(limit=15, p=0.5),

])

 predictions = []

 # Original prediction

 predictions.append(model.predict(image))

 # Augmented predictions

 for _ in range(n_augments - 1):

 aug_image = transform(image=image)['image']

pred = model predict(aug image)

Result: Often 1-2% accuracy improvement

Cost: 10× slower inference
39

Measuring Augmentation EffectivenessMeasuring Augmentation Effectiveness

Experiment Design:

1. Baseline: Train without augmentation

2. With Aug: Train with augmentation

3. Compare:

Training loss curves

Validation accuracy

Test accuracy

Overfitting gap

No augmentation

model1 = train_model(train_data, augment=False)

acc_no_aug = model1.evaluate(test_data)

With augmentation

model2 = train_model(train_data, augment=True)

acc with aug = model2 evaluate(test data)

40

Data Augmentation + Active LearningData Augmentation + Active Learning

Combine both techniques:

1. Active Learning: Select most informative samples

2. Data Augmentation: Generate variations of selected samples

Active learning loop with augmentation

for iteration in range(n_iterations):

 # Query uncertain samples

 query_idx = uncertainty_sampling(model, X_pool, n_samples=10)

 # Augment queried samples

 X_aug, y_aug = augment_samples(X_pool[query_idx], y_pool[query_idx])

 # Add original + augmented to training set

 X_train = np.vstack([X_train, X_pool[query_idx], X_aug])

 y_train = np.hstack([y_train, y_pool[query_idx], y_aug])

 # Retrain

model fit(X train y train)

Result: Best of both worlds!
41

Domain-Specific AugmentationDomain-Specific Augmentation

Medical Imaging:

Mild rotations, flips (check anatomy)

Brightness/contrast (simulate different machines)

Elastic deformations

Avoid: Heavy blurs, unrealistic colors

Satellite Imagery:

Any rotation (no canonical orientation)

Color shifts (atmospheric conditions)

Cloud overlays

Document OCR:

Perspective transforms

Sh d

42

Synthetic Data GenerationSynthetic Data Generation

Beyond augmentation: Generate completely new data

Techniques:

1. GANs: Generate realistic images

2. Style Transfer: Change image style

3. 3D Rendering: Render synthetic scenes

4. Text-to-Image: Stable Diffusion, DALL-E

5. Simulation: Physics engines for robotics

Example: Car detection

Render 3D car models in various poses

Add backgrounds

Train detector

Benefits: Unlimited data perfect labels

43

GANs for Data AugmentationGANs for Data Augmentation

Use trained GAN to generate new samples

from torchvision.models import inception_v3

import torch

Train GAN on your dataset

Then generate new samples

generator = load_trained_gan()

Generate 1000 new images

z = torch.randn(1000, latent dim)

Challenges:

Training GANs is hard

May generate unrealistic samples

Need large dataset to train GAN

Alternative: Use pre-trained GANs (e.g., StyleGAN)
44

Augmentation for Object DetectionAugmentation for Object Detection

Challenge: Must transform bounding boxes too

import albumentations as A

transform = A.Compose([

 A.HorizontalFlip(p=0.5),

 A.Rotate(limit=10, p=0.5),

 A.RandomBrightnessContrast(p=0.3),

], bbox_params=A.BboxParams(format='pascal_voc', label_fields=['labels']))

Apply transformation

augmented = transform(

 image=image,

 bboxes=[[23, 45, 120, 150], [50, 80, 200, 250]],

 labels=[0, 1]

)

aug_image = augmented['image']

Albumentations handles bbox transformations automatically!

45

Augmentation for Semantic SegmentationAugmentation for Semantic Segmentation

Challenge: Transform masks along with images

transform = A.Compose([

 A.HorizontalFlip(p=0.5),

 A.Rotate(limit=30, p=0.5),

 A.ElasticTransform(p=0.3),

 A.GridDistortion(p=0.3),

])

Apply to both image and mask

augmented = transform(image=image, mask=mask)

aug_image = augmented['image']

aug_mask = augmented['mask']

Mask is transformed identically to image

assert aug_image.shape[:2] == aug_mask.shape

46

Common MistakesCommon Mistakes

1. Augmenting Test Data

Only augment training data!

Test on original distribution

2. Too Strong Augmentation

Model learns wrong patterns

Check augmented samples visually

3. Not Preserving Labels

Digit '6' flipped → '9' (different label!)

Medical: Left vs right matters

4. Inconsistent Preprocessing

N li b f ft t ti ?

47

Tools & Libraries SummaryTools & Libraries Summary

Images:

Albumentations: Fast, flexible, comprehensive

imgaug: Similar to Albumentations

torchvision.transforms: PyTorch native

Augly: Facebook's unified library

Text:

nlpaug: Comprehensive text augmentation

TextAugment: EDA implementation

Augly.text: Facebook's text augs

Audio:

audiomentations: Time-domain augmentations

h di f F d i

48

Augmentation in ProductionAugmentation in Production

Considerations:

1. Performance: Augment on-the-fly vs pre-computed

On-the-fly: Saves storage, more variety

Pre-computed: Faster training

2. Reproducibility: Set random seeds

random.seed(42)

np.random.seed(42)

torch.manual_seed(42)

3. Validation: Don't augment val/test sets

4. Monitoring: Track which augmentations used

5. A/B Testing: Compare models with different augmentations

49

Research DirectionsResearch Directions

Current Trends:

1. Learned Augmentation: AutoML for augmentation policies

2. Adversarial Augmentation: Generate hard examples

3. Curriculum Augmentation: Start easy, increase difficulty

4. Cross-Modal Augmentation: Transfer between modalities

5. Foundation Model Augmentation: Use DALL-E, ChatGPT

Open Problems:

Optimal augmentation for small datasets

Task-specific augmentation design

Augmentation for few-shot learning

Augmentation quality metrics
50

Case Study: Image ClassificationCase Study: Image Classification

Dataset: CIFAR-10 (10 classes, 50k train images)

Baseline (No Augmentation):

Train accuracy: 99%

Test accuracy: 70%

Clear overfitting!

With Standard Augmentation:

transform = A.Compose([

Train accuracy: 85%

Test accuracy: 82%

Better generalization!

Improvement: +12% test accuracy
51

What We've LearnedWhat We've Learned

Core Concepts:

Data augmentation creates training data variations

Preserves labels while increasing diversity

Reduces overfitting and improves generalization

Techniques:

Image: Geometric + color transforms

Text: Synonym replacement, back-translation, paraphrasing

Audio: Time stretching, pitch shifting, noise

Libraries:

Albumentations (images)

nlpaug (text)

di i (di)

52

Practical RecommendationsPractical Recommendations

Getting Started:

1. Use Albumentations for images

2. Start with flip + rotate + brightness

3. Measure baseline vs augmented

4. Gradually add more augmentations

Hyperparameter Tuning:

Probability: 0.3-0.7

Magnitude: Start low, increase if underfitting

Number of augs: 2-4 simultaneously

Production:

Augment on-the-fly during training
53

ResourcesResources

Papers:

"AutoAugment: Learning Augmentation Policies from Data" (2019)

"RandAugment: Practical automated data augmentation" (2020)

"SpecAugment: A Simple Data Augmentation Method for ASR" (2019)

"mixup: Beyond Empirical Risk Minimization" (2018)

Libraries:

Albumentations: https://albumentations.ai/

nlpaug: https://github.com/makcedward/nlpaug

audiomentations: https://github.com/iver56/audiomentations

Augly: https://github.com/facebookresearch/AugLy

Tutorials:

Alb i d i

54

https://albumentations.ai/
https://github.com/makcedward/nlpaug
https://github.com/iver56/audiomentations
https://github.com/facebookresearch/AugLy

Mathematical Foundations: Invariance and EquivarianceMathematical Foundations: Invariance and Equivariance

Invariance: Output doesn't change under transformation

Example: Image classifier should be invariant to rotation

Equivariance: Output transforms consistently with input

Example: Segmentation should be equivariant to rotation

Data augmentation teaches invariance:

Training with augmented data

loss = cross_entropy(model(rotate(x)), y) # Same label y

Model learns rotation invariance

55

Manifold Hypothesis and AugmentationManifold Hypothesis and Augmentation

Manifold Hypothesis: High-dimensional data lies on low-dimensional manifold

Augmentation explores the manifold:

Original data: Sparse samples on manifold

Augmented data: Fill gaps along manifold

Interpolation on manifold:

where is transformation, is small

Theoretical benefit:

Smoother decision boundaries

Better generalization

Reduced sample complexity
56

Mixup: Theory and ImplementationMixup: Theory and Implementation

Mixup: Linear interpolation of examples and labels

Formula:

where

Theoretical motivation:

Vicinal Risk Minimization (VRM)

Encourages linear behavior between training examples

Regularizes network to output convex combinations

Implementation:

def mixup_data(x, y, alpha=1.0):

 """Mixup data and labels."""

57

Mixup Variants: CutMix and MoExMixup Variants: CutMix and MoEx

CutMix: Replace patches instead of blending

Advantages over Mixup:

Preserves localization ability

More efficient for CNNs (no blend artifacts)

def cutmix(x, y, alpha=1.0):

 """CutMix augmentation."""

 lam = np.random.beta(alpha, alpha)

 batch_size, _, H, W = x.shape

 index = torch.randperm(batch_size)

 # Random box

 cut_rat = np.sqrt(1. - lam)

 cut_w = int(W * cut_rat)

 cut_h = int(H * cut_rat)

 cx = np.random.randint(W)

 cy = np.random.randint(H)

MoEx (Momentum Exchange): Exponential moving average blending
58

Diffusion Models for Data AugmentationDiffusion Models for Data Augmentation

Modern approach: Use diffusion models to generate variations

Workflow:

1. Add small noise to image

2. Denoise with pretrained diffusion model

3. Use denoised version as augmentation

from diffusers import StableDiffusionImg2ImgPipeline

Benefits:

Semantically meaningful variations

Controllable via prompts

High quality

Challenges: Expensive, requires GPU
59

Contrastive Learning Augmentation StrategiesContrastive Learning Augmentation Strategies

SimCLR: Self-supervised learning via contrastive loss

Key idea: Different augmentations of same image should have similar representations

Augmentation composition:

import torchvision.transforms as transforms

SimCLR augmentation pipeline

simclr_transform = transforms.Compose([

 transforms.RandomResizedCrop(224),

 transforms.RandomHorizontalFlip(),

 transforms.RandomApply([

transforms ColorJitter(0 8 0 8 0 8 0 2)

Findings:

Crop + color jitter most important

Composition matters more than individual augmentations

Stronger augmentation → better representations 60

MoCo (Momentum Contrast) AugmentationMoCo (Momentum Contrast) Augmentation

MoCo v2 augmentation:

moco_transform = transforms.Compose([

 transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),

 transforms.RandomApply([

 transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)

], p=0.8),

 transforms.RandomGrayscale(p=0.2),

 transforms.RandomApply([transforms.GaussianBlur(kernel_size=23)], p=0.5),

 transforms.RandomHorizontalFlip(),

 transforms.ToTensor(),

 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

])

Queue-based approach:

Maintain queue of negatives

Momentum encoder for consistency

Result: State-of-art self-supervised learning
61

Invariant Risk Minimization (IRM)Invariant Risk Minimization (IRM)

Goal: Learn invariant features across environments

Formulation:

where:

: Set of environments (different augmentations)

: Risk in environment

: Feature extractor

Augmentation as environments:

def irm_loss(model, x, y, augmentations):

 """IRM loss across augmentation environments."""

 total loss = 0

Benefit: Robust to distribution shift
62

Consistency Regularization: UDA and FixMatchConsistency Regularization: UDA and FixMatch

Unsupervised Data Augmentation (UDA):

Idea: Model predictions should be consistent under augmentation

def uda_loss(model, x_unlabeled, strong_aug, weak_aug):

 """UDA consistency loss."""

 # Weak augmentation prediction (pseudo-label)

 with torch.no_grad():

 weak_pred = model(weak_aug(x_unlabeled))

 pseudo_label = torch.softmax(weak_pred, dim=1)

FixMatch: UDA + pseudo-labeling with confidence threshold

def fixmatch_loss(model, x_unlabeled, threshold=0.95):

 """FixMatch semi-supervised loss."""

 # Weak augmentation

 weak_pred = model(weak_aug(x_unlabeled))

 max_probs, pseudo_labels = torch.max(torch.softmax(weak_pred, dim=1), dim=1) 63

Learnable Augmentation PoliciesLearnable Augmentation Policies

Neural Augmentation: Learn transformation parameters

Approach:

class LearnableAugmentation(nn.Module):

 def __init__(self):

 super().__init__()

 # Learnable parameters for augmentation

 self.rotation_range = nn.Parameter(torch.tensor(15.0))

 self.brightness_factor = nn.Parameter(torch.tensor(0.2))

 def forward(self, x):

 # Apply augmentation with learned parameters

 angle = torch.rand(1) * self.rotation_range

 brightness = 1 + torch.rand(1) * self.brightness_factor

 x_aug = rotate(x, angle)

 x_aug = adjust_brightness(x_aug, brightness)

 return x_aug

Training: Backprop through augmentation

learnable_aug = LearnableAugmentation()

optimizer = torch optim Adam(learnable aug parameters())

Benefit: Automatically tune augmentation strength 64

Adversarial Training as AugmentationAdversarial Training as Augmentation

Adversarial examples: Inputs with small perturbations that fool model

PGD (Projected Gradient Descent):

Adversarial training:

def pgd_attack(model, x, y, epsilon=0.3, alpha=0.01, num_iter=10):

 """Generate adversarial example."""

 x_adv = x.clone().detach()

 for _ in range(num_iter):

 x_adv.requires_grad = True

 # Compute loss

 pred = model(x_adv)

 loss = F.cross_entropy(pred, y)

 # Gradient ascent

 loss.backward()

 grad = x_adv.grad

 # Update adversarial example

 x_adv = x_adv + alpha * grad.sign()

 # Project back to epsilon ball

 perturbation = torch.clamp(x_adv - x, -epsilon, epsilon)

 x_adv = torch.clamp(x + perturbation, 0, 1).detach()

 return x_adv

Training with adversarial examples

for x, y in dataloader:

65

Meta-Learning for AugmentationMeta-Learning for Augmentation

Goal: Learn which augmentations help for specific tasks

Meta-augmentation:

class MetaAugmentation:

 def __init__(self, augmentations):

 self.augmentations = augmentations

 # Learnable weights for each augmentation

 self.weights = nn.Parameter(torch.ones(len(augmentations)))

 def sample_augmentation(self):

 """Sample augmentation based on learned weights."""

 probs = F.softmax(self.weights, dim=0)

 idx = torch.multinomial(probs, 1).item()

 return self.augmentations[idx]

 def meta_train(self, meta_train_tasks, meta_val_tasks):

 """Meta-training loop."""

 for epoch in range(num_epochs):

 for task in meta_train_tasks:

 # Sample augmentation

 aug = self.sample_augmentation()

 # Train on augmented data

 x_aug, y_aug = aug(task.x_train), task.y_train

 model.train_step(x_aug, y_aug)

Benefit: Task-specific augmentation policies 66

Augmentation Budget and EfficiencyAugmentation Budget and Efficiency

Computational cost:

Augmentation Cost (ms/image) Speedup Strategy

Horizontal flip 0.1 Already fast

Rotation 2.0 Use smaller angles

Color jitter 1.5 GPU acceleration

Optimization strategies:

1. GPU acceleration

import kornia

transform = kornia.augmentation.AugmentationSequential(

 kornia.augmentation.RandomRotation(30),

 kornia.augmentation.ColorJitter(0.2, 0.2, 0.2, 0.1),

 data_keys=["input"]

)

Apply on GPU (batched)

x_aug = transform(x_gpu) # Much faster than CPU

2. Caching expensive augmentations

class CachedAugmentation:

 def __init__(self, aug_fn, cache_size=10000):

67

Data Mixing Beyond MixupData Mixing Beyond Mixup

SaliencyMix: Mix based on saliency maps

def saliencymix(x, y, saliency_fn):

 """Mix based on saliency."""

 batch_size = x.size(0)

 index = torch.randperm(batch_size)

 # Get saliency maps

 sal_a = saliency_fn(x)

 sal_b = saliency_fn(x[index])

 # Mix based on saliency

 mask = (sal_a > sal_b).float()

mixed x mask * x + (1 mask) * x[index]

PuzzleMix: Mix by solving optimization problem

Find optimal cut to preserve features

More sophisticated than random cuts

Co-Mixup: Mix within same class to preserve fine-grained features
68

Policy Search for Optimal AugmentationPolicy Search for Optimal Augmentation

Population Based Augmentation (PBA):

Algorithm:

1. Initialize population of augmentation policies

2. Train models with different policies

3. Select best performers

4. Mutate and combine policies

5. Repeat

class AugmentationPolicy:

 def __init__(self):

 self.ops = random.sample(ALL_OPS, k=5)

 self.probs = np.random.uniform(0, 1, size=5)

 self.magnitudes = np.random.uniform(0, 1, size=5)

 def mutate(self):

 """Mutate policy."""

 idx = random.randint(0, 4)

 if random.random() < 0.5:

 self.probs[idx] += np.random.normal(0, 0.1)

 else:

 self.magnitudes[idx] += np.random.normal(0, 0.1)

 def crossover(self, other):

 """Combine two policies."""

 child = AugmentationPolicy()

 for i in range(5):

 if random.random() < 0.5:

69

Augmentation for Long-Tail DistributionAugmentation for Long-Tail Distribution

Problem: Rare classes benefit more from augmentation

Class-balanced augmentation:

class ClassBalancedAugmentation:

 def __init__(self, class_counts):

 # Compute augmentation probability per class

 # More augmentation for rare classes

 total = sum(class_counts)

 self.aug_probs = {

 cls: 1.0 - (count / total)

 for cls, count in enumerate(class_counts)

 }

 def __call__(self, x, y):

 """Apply augmentation based on class."""

 aug_prob = self.aug_probs[y]

 if random.random() < aug_prob:

 # Strong augmentation for rare classes

 x = strong_augment(x)

 else:

 # Weak augmentation for common classes

Remix: Oversample tail classes with mixup

BBN: Bilateral-branch network with different augmentation per branch
70

Temporal Augmentation for VideosTemporal Augmentation for Videos

Video-specific challenges:

Temporal consistency

Motion patterns

Longer sequences

Temporal augmentation:

def temporal_augment(video, fps=30):

 """Augment video data."""

 # 1. Temporal crop

 start = random.randint(0, len(video) - 64)

video = video[start:start+64]

Spatial + Temporal:

Apply same spatial aug to all frames (consistency)

Or different augs per frame (diversity) 71

3D Augmentation for Point Clouds3D Augmentation for Point Clouds

Point cloud augmentation:

def pointcloud_augment(points):

 """Augment 3D point cloud."""

 # 1. Random rotation

 angle = np.random.uniform(0, 2*np.pi)

 rotation_matrix = np.array([

 [np.cos(angle), -np.sin(angle), 0],

 [np.sin(angle), np.cos(angle), 0],

 [0, 0, 1]

])

 points = points @ rotation_matrix.T

 # 2. Random scaling

 scale = np.random.uniform(0.8, 1.2)

 points = points * scale

 # 3. Random jitter

 noise = np.random.normal(0, 0.02, size=points.shape)

 points = points + noise

PointAugment: Learnable augmentation for point clouds

PointMixup: Mixup in 3D space
72

Graph Augmentation for GNNsGraph Augmentation for GNNs

Graph-specific augmentation:

def graph_augment(graph):

 """Augment graph structure."""

 # 1. Edge dropping

 edge_mask = torch.rand(graph.num_edges) > 0.1

 graph.edge_index = graph.edge_index[:, edge_mask]

 # 2. Node dropping

 node_mask = torch.rand(graph.num_nodes) > 0.1

 graph = graph.subgraph(node_mask)

 # 3. Feature masking

 feat_mask = torch.rand(graph.x.size(1)) > 0.2

 graph.x[:, ~feat_mask] = 0

 # 4. Edge perturbation (add random edges)

 n_new_edges = int(0.1 * graph.num_edges)

src = torch randint(0 graph num nodes (n new edges))

GraphCL: Contrastive learning for graphs with augmentation

M-Mix: Mixup for molecular graphs
73

Augmentation Evaluation MetricsAugmentation Evaluation Metrics

How to measure augmentation quality?

1. Downstream Performance:

def evaluate_augmentation(aug_fn, model, data):

 """Evaluate by downstream task performance."""

 # Train with augmentation

 model aug = train model(data, augmentation=aug fn)

2. Diversity Score:

def diversity_score(original, augmented):

 """Measure diversity of augmented samples."""

 # Compute pairwise distances

from scipy spatial distance import pdist

3. Invariance Test:

def invariance_score(model, x, augmentations):

 """Measure how invariant model is to augmentations."""

 original_pred = model(x) 74

Curriculum AugmentationCurriculum Augmentation

Idea: Start with weak augmentation, gradually increase strength

Progressive augmentation:

class CurriculumAugmentation:

 def __init__(self, max_epochs):

 self.max_epochs = max_epochs

 self.current_epoch = 0

 def get_augmentation(self):

 """Return augmentation based on training progress."""

 # Linearly increase augmentation strength

 progress = self.current_epoch / self.max_epochs

 if progress < 0.3:

 # Early: weak augmentation

 return A.Compose([

 A.HorizontalFlip(p=0.5),

])

 elif progress < 0.7:

 # Mid: medium augmentation

 return A.Compose([

 A.HorizontalFlip(p=0.5),

 A.Rotate(limit=15, p=0.5),

 A.RandomBrightnessContrast(p=0.3),

])

 else:

 # Late: strong augmentation

 return A.Compose([

 A.HorizontalFlip(p=0.5),

 A.Rotate(limit=30, p=0.5),

 A.RandomBrightnessContrast(p=0.5),

 A.GaussNoise(p=0.3),

 A.Cutout(num_holes=8, max_h_size=16, max_w_size=16, p=0.5),

])

 def update_epoch(self, epoch):

 self.current_epoch = epoch

75

Multi-Modal AugmentationMulti-Modal Augmentation

Cross-modal augmentation: Augment multiple modalities consistently

Example: Image + Text

def multimodal_augment(image, caption):

 """Augment image and caption together."""

 # Image augmentation

 if random.random() < 0.5:

 image = horizontal_flip(image)

 # Update caption if needed

 # "person on left" → "person on right"

 caption = flip_spatial_words(caption)

Audio + Text (speech recognition):

def audio_text_augment(audio, transcript):

 """Augment audio and transcript together."""

 # Speed perturbation

 speed = random.uniform(0.9, 1.1)

 audio = change_speed(audio, speed)

 # Transcript unchanged (same words) 76

Foundation Model-Based AugmentationFoundation Model-Based Augmentation

Stable Diffusion for augmentation:

from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")

Benefits:

Semantically meaningful variations

Can generate rare classes

High visual quality

Challenges:

Expensive (GPU, time)

May generate out-of-distribution samples

Need careful prompt engineering 77

Augmentation TransferabilityAugmentation Transferability

Question: Do augmentations learned on one dataset transfer to others?

Empirical findings:

ImageNet → Other Vision Tasks:

AutoAugment policies from ImageNet work well on CIFAR, SVHN

Transferability: ~80-90% of performance

Natural Images → Medical Images:

Standard augmentations (rotation, flip) transfer well

Advanced (CutMix, MixUp) less effective

Transferability: ~60-70%

Practical implications:

Use pre-discovered policies for your domain

78

Advanced Augmentation SummaryAdvanced Augmentation Summary

Theoretical Foundations:

Invariance and equivariance

Manifold hypothesis

Vicinal risk minimization (Mixup)

Consistency regularization

Advanced Mixing Strategies:

Mixup, CutMix, MoEx

SaliencyMix, PuzzleMix

Class-balanced mixing

Modern Approaches:

Diffusion models for augmentation

C i l i (Si CLR M C)

79

Interview QuestionsInterview Questions

Common interview questions on data augmentation:

1. "When does data augmentation help and when can it hurt?"

Helps: Limited training data, need invariance to transformations

Hurts: Unrealistic transformations (upside-down text), excessive augmentation creating distribution shift

Key: Augmentations should preserve label meaning

2. "What is Mixup and why does it work?"

Mixup: Blend two images and their labels (e.g., 70% cat + 30% dog)

Works because: Vicinal risk minimization - smooth decision boundaries

Forces model to be less confident, reduces overfitting

Especially effective for calibration and adversarial robustness

80

Key TakeawaysKey Takeaways

1. Augmentation expands effective training data

Same images, different views → better generalization

2. Choose augmentations that preserve semantics

Flip a cat? Still a cat. Flip text? Unreadable

3. Domain-specific strategies matter

Images: geometric + color transforms

Text: synonyms, back-translation

Audio: time stretch, pitch shift

4. Start simple, measure impact

Basic transforms often work well

Always validate on held-out data

Next week: Using LLMs for feature extraction
81

Questions?Questions?

Lab: Implement and compare augmentation strategies

Measure impact on model performance

