Data Augmentation
Week 5 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

Part 1: The Data Hunger Problem

More data from existing data

Previously on CS 203...

Week 1: Collected 10,000 movie records from OMDB API

Week 2: Validated and cleaned the data

Week 3: Labeled 5,000 movies as "good" or "bad"

Week 4: Optimized labeling with active learning + weak supervision

labeled movies
model accuracy

Can we improve without more labeling?

The Data Hunger Problem

Deep learning models need data:

* ResNet-50 trained on 1.2M ImageNet images
e GPT-3 trained on 45TB of text
e AlphaGo trained on 30M game positions

Your reality:

e 500 labeled images
e 1,000 text samples
e 100 audio clips

Solution: Create more data from existing data through augmentation

What is Data Augmentation?

Data Augmentation: Apply transformations to existing data to create new training examples
Key Idea: Generate variations that preserve the label but increase diversity

Example (Image):

Original: Cat image

Rotated 10°: Still a cat

Flipped horizontally: Still a cat

Slightly darker: Still a cat
Benefits:
e More training data without labeling

e Better generalization

* Reduced overfitting

The Photographer Analogy

Imagine you only have ONE photo of a cat to teach someone "what is a cat":

One photo: Person might think "cat" means
- This specific pose

- This specific lighting

- This specific background

- This specific angle

Many photos: Person learns

- Cats can be in different poses

- Cats look similar in different lighting
- Cats can be anywhere

- Cats look similar from different angles

Augmentation = Taking many "virtual photos" from one real photo!

Free Data: The Augmentation Magic

original dataset = 1000
training epochs = 100

augmented dataset = 1000 * 10
training epochs = 100

10x more data for FREE (no labeling cost)!

Why Data Augmentation Works

1. Implicit Regularization

* Model sees slightly different versions
e Learns robust features

* Reduces overfitting

2. Invariance Learning

* Model learns that rotations don't change identity
e Small color shifts don't matter

e Position in frame doesn't change class

3. Coverage of Data Distribution

 Fills gaps in training data

e Simulates real-world variations 8

The Overfitting Insight

Overfitting happens when the model memorizes instead of learning. If you show the exact same images

every epoch, the model can just memorize "image #42 = cat". Augmentation forces the model to learn what
makes a cat a cat, not just memorize training images.

Without Augmentation: With Augmentation:
Epoch 1: [imgl, img2, Epoch 1: [imgl v1, img2 v3, img3 v2]
Epoch 2: [imgl, img2, Epoch 2: [imgl v4, img2 v1, img3 v7]

Epoch 3: [imgl, img2, Epoch 3: [imgl v2, img2 v5, img3 v4]
! .
Model memorizes exact Model learns general patterns

Augmentation = Forcing the model to generalize

Data Augmentation vs Data Collection

Data Collection:

Time: Weeks to months

Cost: High (labeling, storage)

Effort: Manual collection and annotation

Diversity: Limited by budget

Data Augmentation:

Time: Minutes to hours

Cost: Low (just compute)

Effort: Automated transformations

Diversity: Programmatically generated

Best Practice: Do both! Augmentation complements collection.
10

Why Image Augmentation Works So Well

Key insight: Geometric changes don't change what's in the image!

Rotated:

It's still a cat! The label doesn't change.

This is called "invariance" - the label is invariant to these transforms.

1

Image Augmentation: Geometric Transforms

Basic transformations:

. Rotation: Rotate £15-30 degrees

. Horizontal Flip: Mirror image left-right

. Vertical Flip: Mirror image top-bottom (use carefully)
. Translation: Shift image by pixels

. Scaling: Zoom infout

. Shearing: Skew image

N OO o B~ W N P

. Cropping: Random crops

Implementation with PIL:

PIL Image

img = Image.open('cat.jpg')
rotated = img.rotate(15)

The Movie Poster Example

PIL Image
albumentations

poster = Image.open("inception poster.jpg")
label = "Sci-Fi/Thriller"

transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.3),
A.Rotate(limit=10),

1)

Same poster, 10 training examples!

Image Augmentation: Color Transforms

Color space adjustments:

1. Brightness: Make lighter/darker

2. Contrast: Increase/decrease contrast
3. Saturation: Make more/less colorful
4. Hue: Shift color spectrum

5. Grayscale: Convert to black and white

6. Color Jittering: Random color variations

PIL ImageEnhance

enhancer ImageEnhance.Brightness(img)
brighter = enhancer.enhance(1l.5)

enhancer ImageEnhance.Contrast(img)
higher contrast = enhancer.enhance(1l.3)

Image Augmentation: Advanced Techniques

1. Cutout: Remove random patches

X, Yy = random.randint(0, w-16), random.randint(0, h-16)
img[y:y+16, Xx:x+16] = 0

2. Mixup: Blend two images

lambda val = np.random.beta(alpha, alpha)
mixed lambda val * imgl + (1 - lambda val) * img2

label = lambda val * labell + (1 - lambda val) * label2

3. CutMix: Replace patch with another image
4. AugMix: Apply multiple augmentations and mix

S

Albumentations Library

Fast and flexible image augmentation library

albumentations A
albumentations.pytorch ToTensorV2

transform = A.Compose([

A.RandomRotate90(),

A.Flip(),

A.Transpose(),

A.GaussNoise(),

A.OneOf ([
A.MotionBlur(p=0.2),
A.MedianBlur(blur limit=3, p=0.1),
A.Blur(blur limit=3, p=0.1),

1, p=0.2),

A.ShiftScaleRotate(shift 1imit=0.0625, scale limit=0.2, rotate limit=45, p=0.2),

A.OneOf ([
A.OpticalDistortion(p=0.3),
A.GridDistortion(p=0.1),

Albumentations - Key Features

Why Albumentations?

1. Fast: Optimized with NumPy/OpenCV

2. Flexible: Easy to compose transformations

3. Framework-agnostic: Works with PyTorch, TensorFlow, etc.
4. Preserves Bounding Boxes: For object detection

5. Keypoint Support: For pose estimation

Common Augmentations:

Geometric: Rotate, Flip, Shift, Scale

Blur: Motion, Gaussian, Median

Noise: Gaussian, ISO, Salt & Pepper

Weather: Rain, Fog, Snow, Sun Flare
17

Advanced: Cutout, CoarseDropout

Image Augmentation Best Practices

1. Choose Appropriate Augmentations

e Natural images: Rotation, flip, color jitter
* Medical images: Be careful with flips (anatomy matters)

» Text/OCR: No rotation, no flip (orientation matters)

2. Augmentation Strength

e Start mild, increase gradually
e Too strong: Model learns wrong patterns

» Too weak: No benefit

3. Validation Set

e Don't augment validation/test data

* Measure performance on real distribution 18

When NOT to Augment

Be careful with:

1. Medical imaging: Artifacts can mislead diagnhosis

2. OCR/Text: Rotation can make text unreadable

3. Fine-grained classification: Too much blur loses details
4. Small objects: Heavy cropping loses object

5. Asymmetric objects: Flips change meaning (e.g., left/right lung)

Rule: Only augment if transformation preserves label

19

The "6 vs 9" Problem

Classic augmentation mistake:

Original: Flipped Vertically:

Label: "6" Label: Still "6"??7

NO! The label changed! This is WRONG!

Always ask: Does this transformation preserve the label?

Good vs Bad Augmentation Examples

GOOD AUGMENTATION:

|
| Task: Classify movie genres from posters

| Flip horizontal: Action movie is still action
| Brightness change: Genre doesn't change

| Small rotation: Poster still recognizable
|

BAD AUGMENTATION:

| Task: Read text from movie posters

| Flip horizontal: "STAR WARS" becomes "SRAW RATS"
| Heavy rotation: Text becomes unreadable
| Too much blur: Can't see letters

Text Augmentation: Overview

Challenges:

» Discrete tokens (can't interpolate like pixels)
e Semantic meaning matters

e Grammar and syntax constraints

Approaches:

1. Rule-based: Synonym replacement, random operations
2. Back-translation: Translate to another language and back
3. Paraphrasing: LLMs generate paraphrases

4. Contextual: BERT-based word replacement

22

Text Augmentation: Movie Review Example

original = "This movie was absolutely fantastic! Great acting."
label = "POSITIVE"

augmented = [
“This film was absolutely fantastic! Great acting.",
“This movie was really fantastic! Great acting.",
"This movie was absolutely amazing! Great acting.",
"This movie was fantastic! Excellent acting.",
"Ce film etait fantastique!" -> "This film was great!"

Text augmentation must preserve meaning AND sentiment!

The Paraphrase Intuition

Humans express the same idea in many ways:

"The movie was great!"

"I really enjoyed this film!"
"Fantastic movie, would recommend!"
“Loved every minute of it!"

“"A truly wonderful cinematic experience!"

All mean: POSITIVE sentiment
Model should recognize ALL of these patterns!

Text augmentation teaches the model that different words can mean the same thing.

24

Text Augmentation: EDA

Easy Data Augmentation (EDA) - Simple but effective

4 Operations:

1. Synonym Replacement: Replace words with synonyms

"The movie was great" - "The film was excellent"

2. Random Insertion: Insert random synonyms

"I love this" - "I really love this"

3. Random Swap: Swap word positions

"She likes pizza" - "She pizza likes"

4. Random Deletion: Delete words randomly

25

Text Augmentation with nipaug

nlpaug: Comprehensive text augmentation library

nlpaug.augmenter.word naw
nlpaug.augmenter.sentence

aug _syn = naw.SynonymAug(aug src='wordnet')

text = "The quick brown fox jumps over the lazy dog"
augmented = aug syn.augment (text)

print(augmented)

aug bert = naw.ContextualWordEmbsAug(
model path='bert-base-uncased"',
action="substitute"

)

augmented = aug bert.augment(text)

Text Augmentation: Back-Translation

Idea: Translate to another language and back

transformers pipeline

en de pipeline("translation", model="Helsinki-NLP/opus-mt-en-de")
de en pipeline("translation", model="Helsinki-NLP/opus-mt-de-en")

text = "I love machine learning"
german = en _de(text)[0]['translation text']
back = de en(german)[0]['translation text']

print(f"Original: {text}")
print(f"German: {german}")
print(f"Back: {back}")

Pros: Maintains meaning, natural variations
Cons: Expensive (requires translation models)

Text Augmentation: Paraphrasing with LLMs

Use LLMs to generate paraphrases

google genai
0s

client = genai.Client(api key=os.environ['GEMINI API KEY'])

paraphrase(text, n=3):

prompt = f""*"

Generate {n} paraphrases of the following text.
Keep the same meaning but use different words.
Return one paraphrase per line.

Text: {text}

response = client.models.generate content(
model="models/gemini-2.0-flash-exp",
contents=prompt

Text Augmentation Best Practices

1. Preserve Label

e Sentiment: Don't change positive to negative
e NER: Keep entity boundaries

e Classification: Maintain class meaning

2. Maintain Coherence

* Avoid random operations that break grammar

e Check that output is readable
3. Domain-Specific
e Legal text: Minimal changes (meaning critical)

» Social media: More aggressive OK (informal)

» Code: Very careful (syntax matters) 29

Audio Augmentation: Overview

Audio = Waveform + Spectrogram

Time Domain Augmentations:

Time stretching

Pitch shifting

Adding noise

Volume changes

Time shifting

Frequency Domain Augmentations:

e SpecAugment
e Frequency masking

e Time masking
30

Audio Augmentation with audiomentations

audiomentations Compose, AddGaussianNoise, TimeStretch, PitchShift

augment = Compose([
AddGaussianNoise(min amplitude=0.001, max amplitude=0.015, p=0.5),
TimeStretch(min rate=0.8, max rate=1.25, p=0.5),
PitchShift(min semitones=-4, max semitones=4, p=0.5),

1)

librosa

audio, sr = librosa.load('audio.wav', sr=16000)

augmented audio = augment(samples=audio, sample rate=sr)

SpecAugment for Speech Recognition

SpecAugment: Augment spectrograms directly

Operations:

1. Time Masking: Mask consecutive time steps
2. Frequency Masking: Mask frequency channels

3. Time Warping: Warp time axis

torch
torchaudio.transforms FrequencyMasking, TimeMasking

spectrogram = torchaudio.transforms.MelSpectrogram() (audio)

freq _mask FrequencyMasking(freq mask param=30)
time mask = TimeMasking(time mask param=100)

Used by: Google's speech recognition, Wav2Vec 2.0

Audio Augmentation: Common Techniques

1. Background Noise

audiomentations AddBackgroundNoise

augment = AddBackgroundNoise(
sounds path="/path/to/noise/files",
min snr db=3,
max_snr_db=30,
p=1.0

2. Room Impulse Response

audiomentations ApplyImpulseResponse

augment = ApplyImpulseResponse(
ir path="/path/to/impulse/responses",
p=0.5

3. Compression (MP3 artifacts)
4. Clipping (Simulate distortion)
5. Band-pass filters

Augly: Facebook's Augmentation Library

Unified API for images, audio, video, and text

augly.image imaugs
augly.audio audaugs
augly.text textaugs

img augmented = imaugs.augment image(
img,
[
imaugs.Blur(),
imaugs.RandomNoise(),
imaugs.Rotate(degrees=15),

audio augmented = audaugs.apply lambda(
audio,
aug function=audaugs.add background noise,
snr_level db=10

Augly Features

Cross-Modal Augmentations:

Images:

Blur, brightness, contrast, noise

Overlay emoiji, text, shapes

Meme generation

Pixel distortions

Audio:

e Background noise, reverb, pitch shift
e Clipping, speed, volume

e Time stretch

Text:

B85

Designing an Augmentation Pipeline

Step 1: Understand Your Task

e Classification: Aggressive augmentation OK
» Detection: Preserve bounding boxes

e Segmentation: Transform masks too

Step 2: Start Simple

Step 3: Gradually Increase

transform = A.Compose

Step 4: Measure Impact

e Track validation accuracy

e Compare with/without each augmentation

Augmentation Hyperparameters

Key parameters to tune:

1. Probability (p): How often to apply
o Start: p=0.5

o Increase if underfitting

o Decrease if validation worse
2. Magnitude: Strength of transformation
o Rotation: £10° - *30°
o Brightness: +10% - *30%
3. Combination: How many augmentations together

o Start: 1-2 at a time
o Advanced: 3-5 at a time

Strategy: Grid search or random search 37

AutoAugment & RandAugment

AutoAugment: Learn augmentation policy with RL
Problem: Manual tuning is tedious
Solution: Use RL to find best augmentation sequence

RandAugment: Simplified version

torchvision.transforms RandAugment

transform = RandAugment (
num ops=2,
magnitude=9

)

augmented = transform(image)

Policies learned on ImageNet work well on other datasets!

38

Test-Time Augmentation (TTA)

Idea: Augment at inference time and average predictions

albumentations

tta predict(model, image, n augments=10):

transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.Rotate(limit=15, p=0.5),

1)

predictions = []
predictions.append(model.predict(image))

range(n_augments - 1):
aug image = transform(image=image)|['image’]

Result: Often 1-2% accuracy improvement
Cost: 10x slower inference

Measuring Augmentation Effectiveness

Experiment Design:

1. Baseline: Train without augmentation
2. With Aug: Train with augmentation
3. Compare:

o Training loss curves

o Validation accuracy

o Test accuracy

o Qverfitting gap

modell = train model(train data, augment=
acc no aug = modell.evaluate(test data)

model2 = train model(train data, augment=

Data Augmentation + Active Learning

Combine both techniques:

1. Active Learning: Select most informative samples

2. Data Augmentation: Generate variations of selected samples

iteration range(n iterations):

query idx uncertainty sampling(model, X pool, n samples=10)

X aug, y aug = augment samples(X pool[query idx], y pool[query idx])

X train np.vstack([X train, X pool[query idx], X aug])
y train = np.hstack([y train, y pool[query idx], y aug])

Result: Best of both worlds!

Domain-Specific Augmentation

Medical Imaging:

Mild rotations, flips (check anatomy)

Brightness/contrast (simulate different machines)

Elastic deformations

Avoid: Heavy blurs, unrealistic colors
Satellite Imagery:
* Any rotation (no canonical orientation)

» Color shifts (atmospheric conditions)

e Cloud overlays

Document OCR:

» Perspective transforms 42

Synthetic Data Generation

Beyond augmentation: Generate completely nhew data

Techniques:

1. GANs: Generate realistic images

2. Style Transfer: Change image style

3. 3D Rendering: Render synthetic scenes
4. Text-to-Image: Stable Diffusion, DALL-E

5. Simulation: Physics engines for robotics

Example: Car detection

e Render 3D car models in various poses
e Add backgrounds

e Train detector
43

DAamafidae lInlirmmitAA Alata ~AardfFacnt lalhAle~

GANSs for Data Augmentation

Use trained GAN to generate new samples

torchvision.models inception v3
torch

generator = load trained gan()

Challenges:

e Training GANs is hard
* May generate unrealistic samples

* Need large dataset to train GAN

44
Alternative: Use pre-trained GANs (e.g., StyleGAN)

Augmentation for Object Detection

Challenge: Must transform bounding boxes too

albumentations

transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.Rotate(limit=10, p=0.5),
A.RandomBrightnessContrast(p=0.3),
], bbox params=A.BboxParams(format='pascal voc', label fields=['labels']))

augmented = transform(
image=image,
bboxes=[[23, 45, 120, 150], [50, 80, 200, 250]],
labels=[0, 1]

aug image = augmented['image']

Albumentations handles bbox transformations automatically!

Augmentation for Semantic Segmentation

Challenge: Transform masks along with images

transform = A.Compose([
A.HorizontalFlip(p=0.5),
A.Rotate(limit=30, p=0.5),
A.ElasticTransform(p=0.3),
A.GridDistortion(p=0.3),

augmented transform(image=image, mask=mask)

aug image augmented['image"']
aug mask = augmented['mask’]

aug image.shape[:2] == aug mask.shape

Common Mistakes

1. Augmenting Test Data

e Only augment training data!

e Test on original distribution

2. Too Strong Augmentation

e Model learns wrong patterns

e Check augmented samples visually
3. Not Preserving Labels

 Digit '6' flipped - '9' (different label!)
e Medical: Left vs right matters

4. Inconsistent Preprocessing

47

Tools & Libraries Summary

Images:

Albumentations: Fast, flexible, comprehensive

imgaug: Similar to Albumentations

torchvision.transforms: PyTorch native

Augly: Facebook's unified library

Text:

* nlpaug: Comprehensive text augmentation
o TextAugment: EDA implementation

e Augly.text: Facebook's text augs

Audio:

e audiomentations: Time-domain augmentations

48

Augmentation in Production

Considerations:

1. Performance: Augment on-the-fly vs pre-computed

o On-the-fly: Saves storage, more variety

o Pre-computed: Faster training

2. Reproducibility: Set random seeds

random.seed(42)

np.random.seed(42)
torch.manual seed(42)

3. Validation: Don't augment val/test sets
4. Monitoring: Track which augmentations used

5. A/B Testing: Compare models with different augmentations

49

Research Directions

Current Trends:

1. Learned Augmentation: AutoML for augmentation policies
2. Adversarial Augmentation: Generate hard examples

3. Curriculum Augmentation: Start easy, increase difficulty
4. Cross-Modal Augmentation: Transfer between modalities

5. Foundation Model Augmentation: Use DALL-E, ChatGPT

Open Problems:

Optimal augmentation for small datasets

Task-specific augmentation design

Augmentation for few-shot learning

Augmentation quality metrics
50

Case Study: Image Classification

Dataset: CIFAR-10 (10 classes, 50k train images)

Baseline (No Augmentation):

e Train accuracy: 99%
* Test accuracy: 70%

e Clear overfitting!

With Standard Augmentation:

transform = A.Compose([

e Train accuracy: 85%
e Test accuracy: 82%

e Better generalization!

51
Improvement: +12% test accuracy

What We've Learned

Core Concepts:

e Data augmentation creates training data variations
* Preserves labels while increasing diversity

* Reduces overfitting and improves generalization
Techniques:
e Image: Geometric + color transforms

e Text: Synonym replacement, back-translation, paraphrasing

* Audio: Time stretching, pitch shifting, noise

Libraries:

* Albumentations (images)

* nlpaug (text) 52

Practical Recommendations

Getting Started:

1. Use Albumentations for images
2. Start with flip + rotate + brightness
3. Measure baseline vs augmented

4. Gradually add more augmentations

Hyperparameter Tuning:

e Probability: 0.3-0.7
e Magnitude: Start low, increase if underfitting

 Number of augs: 2-4 simultaneously
Production:

* Augment on-the-fly during training 53

Resources

Papers:

» "AutoAugment: Learning Augmentation Policies from Data" (2019)
» "RandAugment: Practical automated data augmentation" (2020)
» "SpecAugment: A Simple Data Augmentation Method for ASR" (2019)

* "mixup: Beyond Empirical Risk Minimization" (2018)

Libraries:

Albumentations: https://albumentations.ai/

nlpaug: https://github.com/makcedward/nlpaug

audiomentations: https://github.com/iver56/audiomentations

Augly: https://github.com/facebookresearch/AugLy

Tutorials:

54

https://albumentations.ai/
https://github.com/makcedward/nlpaug
https://github.com/iver56/audiomentations
https://github.com/facebookresearch/AugLy

Mathematical Foundations: Invariance and Equivariance

Invariance: Output doesn't change under transformation

Example: Image classifier should be invariant to rotation

 f(rotate(cat)) = ”cat”

Equivariance: Output transforms consistently with input

f(T(z)) = T'(f(x))

Example: Segmentation should be equivariant to rotation

- segment(rotate(image)) = rotate(segment(image))

Data augmentation teaches invariance:

loss = cross_entropy(model(rotate(x)), y)

Manifold Hypothesis and Augmentation

Manifold Hypothesis: High-dimensional data lies on low-dimensional manifold

Augmentation explores the manifold:

* Original data: Sparse samples on manifold

* Augmented data: Fill gaps along manifold
Interpolation on manifold:

Taug = T+ € VoI (z)
where T’ is transformation, € is small

Theoretical benefit:

e Smoother decision boundaries
e Better generalization

* Reduced sample complexity
56

Mixup: Theory and Implementation

Mixup: Linear interpolation of examples and labels

Formula:

where A ~ Beta(a, a)

Theoretical motivation:

 Vicinal Risk Minimization (VRM)
* Encourages linear behavior between training examples

e Regularizes network to output convex combinations

Implementation:

mixup data(x, y, alpha=1.0):
"""Mixup data and labels."""

Mixup Variants: CutMix and MoEx

CutMix: Replace patches instead of blending

Advantages over Mixup:

e Preserves localization ability

» More efficient for CNNs (no blend artifacts)

cutmix(x, y, alpha=1.0):

“""CutMix augmentation.™"""

lam = np.random.beta(alpha, alpha)
batch size, , H, W = x.shape
index = torch.randperm(batch size)

cut rat = np.sqrt(1. - lam)
cut w = int(W * cut rat)
cut h = int(H * cut rat)

CX = np.random.randint (W)
cy = np.random.randint(H)

MoEx (Momentum Exchange): Exponential moving average blending

Diffusion Models for Data Augmentation

Modern approach: Use diffusion models to generate variations

Workflow:

1. Add small noise to image
2. Denoise with pretrained diffusion model

3. Use denoised version as augmentation

diffusers StableDiffusionImg2ImgPipeline

Benefits:

e Semantically meaningful variations
e Controllable via prompts
e High quality

59
Challenges: Expensive, requires GPU

Contrastive Learning Augmentation Strategies

SIimCLR: Self-supervised learning via contrastive loss
Key idea: Different augmentations of same image should have similar representations

Augmentation composition:

torchvision.transforms transforms

simclr_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomApply

Findings:

e Crop + color jitter most important

e Composition matters more than individual augmentations

« Stronger augmentation - better representations 60

MoCo (Momentum Contrast) Augmentation

MoCo v2 augmentation:

moco_transform = transforms.Compose([
transforms.RandomResizedCrop (224, scale=(0.2, 1.0)),
transforms.RandomApply ([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
1, p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([transforms.GaussianBlur(kernel size=23)], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

Queue-based approach:

* Maintain queue of negatives

« Momentum encoder for consistency

Result: State-of-art self-supervised learning

Invariant Risk Minimization (IRM)

Goal: Learn invariant features across environments

Formulation:

. e e . 2
mq)ln E R¢(®) +)\va\wzl.oR (w - @)
where:

« &: Set of environments (different augmentations)
« RE: Risk in environment e

o &: Feature extractor

Augmentation as environments:

irm loss(model, x, y, augmentations):
"""IRM loss across augmentation environments."""

Benefit: Robust to distribution shift

Consistency Regularization: UDA and FixMatch

Unsupervised Data Augmentation (UDA):

Idea: Model predictions should be consistent under augmentation

Lconsz’stency — Ew,aug [KL (p<y’ CI)) Hp(y’ aug(a:)))]

uda loss(model, x unlabeled, strong aug, weak aug):
"""UDA consistency loss."""

torch.no grad():

weak pred = model(weak aug(x unlabeled))
pseudo label = torch.softmax(weak pred, dim=1)

FixMatch: UDA + pseudo-labeling with confidence threshold

fixmatch loss(model, x unlabeled, threshold=0.95):
"""FixMatch semi-supervised loss."""

weak pred = model(weak aug(x unlabeled))
max_probs, pseudo labels = torch.max(torch.softmax(weak pred, dim=1), dim=1)

Learnable Augmentation Policies

Neural Augmentation: Learn transformation parameters

Approach:

LearnableAugmentation(nn.Module) :
__init (self):
super(). init ()

self.rotation range = nn.Parameter(torch.tensor(15.0))
self.brightness factor = nn.Parameter(torch.tensor(0.2))

forward(self, x):

angle = torch.rand(1l) * self.rotation range
brightness = 1 + torch.rand(1) * self.brightness factor

X_aug rotate(x, angle)
X_aug adjust brightness(x aug, brightness)

X_aug

Benefit: Automatically tune augmentation strength

Adversarial Training as Augmentation

Adversarial examples: Inputs with small perturbations that fool model

PGD (Projected Gradient Descent):

Tady = T + €~ 31gn(VwL(f(:L'), y))

Adversarial training:

pgd attack(model, x, y, epsilon=0.3, alpha=0.01, num iter=10):
"""Generate adversarial example."""
x_adv = x.clone().detach()

range(num_iter):

X adv.requires grad =

pred = model(x_adv)
loss = F.cross entropy(pred, vy)

loss.backward()
grad = x _adv.grad

X adv = x_adv + alpha * grad.sign()

perturbation = torch.clamp(x adv - x, -epsilon, epsilon)

X adv = torch.clamp(x + perturbation, 0, 1).detach()

X_adv

X, Yy dataloader:

Meta-Learning for Augmentation

Goal: Learn which augmentations help for specific tasks

Meta-augmentation:

MetaAugmentation:
__init (self, augmentations):
self.augmentations = augmentations

self.weights = nn.Parameter(torch.ones(len(augmentations)))

sample augmentation(self):

“""“Sample augmentation based on learned weights."""

probs = F.softmax(self.weights, dim=0)

idx = torch.multinomial(probs, 1).item()
self.augmentations[idx]

meta train(self, meta train tasks, meta val tasks):
“""Meta-training loop."""
epoch range(num_epochs):
task meta train tasks:

aug = self.sample augmentation()

X_aug, y aug = aug(task.x train), task.y train
model.train step(x aug, y aug)

Benefit: Task-specific augmentation policies

Augmentation Budget and Efficiency

Computational cost:

Cost (ms/image) | Speedup Strategy

Horizontal flip 0.1 Already fast
Rotation 2.0 Use smaller angles

Color jitter 1.5 GPU acceleration

Optimization strategies:

kornia

transform = kornia.augmentation.AugmentationSequential(
kornia.augmentation.RandomRotation(30),
kornia.augmentation.ColorJitter(0.2, 0.2, 0.2, 0.1),
data keys=["input"]

X_aug = transform(x_gpu)

CachedAugmentation: 57
__init_ (self, aug_fn, cache size=10000):

Data Mixing Beyond Mixup

SaliencyMix: Mix based on saliency maps

saliencymix(x, y, saliency fn):
"""Mix based on saliency."""

batch size = x.size(0)

index = torch.randperm(batch size)

saliency fn(x)
saliency fn(x[index])

(sal _a > sal b).float()

L - N V| S AN L -~ -

PuzzleMix: Mix by solving optimization problem

* Find optimal cut to preserve features

* More sophisticated than random cuts

Co-Mixup: Mix within same class to preserve fine-grained features

Policy Search for Optimal Augmentation

Population Based Augmentation (PBA):

Algorithm:

1. Initialize population of augmentation policies
2. Train models with different policies

3. Select best performers

4. Mutate and combine policies

5. Repeat

AugmentationPolicy:

init (self):
self.ops = random.sample(ALL_OPS, k=5)
self.probs = np.random.uniform(0, 1, size

self.magnitudes = np.random.uniform(0, 1, size=5)

Augmentation for Long-Tail Distribution

Problem: Rare classes benefit more from augmentation

Class-balanced augmentation:

ClassBalancedAugmentation:
~_init (self, class counts):

total = sum(class counts)
self.aug probs = {
cls: 1.0 - (count / total)
cls, count enumerate(class counts)

__call (self, x, y):
"""Apply augmentation based on class."""
aug prob = self.aug probs[y]

random. random() < aug prob:

strong augment (x)

Remix: Oversample tail classes with mixup
BBN: Bilateral-branch network with different augmentation per branch

Temporal Augmentation for Videos

Video-specific challenges:

e Temporal consistency
e Motion patterns

e Longer sequences

Temporal augmentation:

temporal augment(video, fps=30):
“""Augment video data."""

random.randint (0, len(video) - 64)

Spatial + Temporal:

* Apply same spatial aug to all frames (consistency)

» Or different augs per frame (diversity)

71

3D Augmentation for Point Clouds

Point cloud augmentation:

pointcloud augment(points):
“""Augment 3D point cloud."""

angle = np.random.uniform(0, 2*np.pi)

rotation matrix = np.array([
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), O],
[0, O, 1]

1)

points = points @ rotation matrix.T

scale = np.random.uniform(0.8, 1.2)
points = points * scale

noise = np.random.normal(0, 0.02, size=points.shape)
points = points + noise

PointAugment: Learnable augmentation for point clouds
PointMixup: Mixup in 3D space

Graph Augmentation for GNNs

Graph-specific augmentation:

graph augment(graph):
“"“"Augment graph structure."""

edge mask = torch.rand(graph.num edges) > 0.1

graph.edge index = graph.edge index[:, edge mask]

node mask = torch.rand(graph.num nodes) > 0.1
graph = graph.subgraph(node mask)

feat mask = torch.rand(graph.x.size(1l)) > 0.2
graph.x[:, ~feat mask] = 0

n new edges = int(0.1 * graph.num edges)

() N =Yalal=
GraphCL: Contrastive learning for graphs with augmentation
M-Mix: Mixup for molecular graphs

Augmentation Evaluation Metrics

How to measure augmentation quality?

1. Downstream Performance:

evaluate augmentation(aug fn, model, data):
“"""Evaluate by downstream task performance."""

model aug = train model(data, augmentation=aug

2. Diversity Score:

diversity score(original, augmented):
"""Measure diversity of augmented samples."""

3. Invariance Test:

invariance score(model, x, augmentations):
"""Measure how invariant model is to augmentations."""
original pred = model(x) 74

Curriculum Augmentation

Idea: Start with weak augmentation, gradually increase strength

Progressive augmentation:

CurriculumAugmentation:
init (self, max epochs):
self.max_epochs = max_epochs
self.current _epoch = 0

get augmentation(self):
"""Return augmentation based on training progress."""

progress = self.current _epoch / self.max epochs
progress < 0.3:

A.Compose ([
A.HorizontalFlip(p=0.5),
1)

progress < 0.7:

A.Compose ([
.HorizontalFlip(p=0.5),
.Rotate(limit=15, p=0.5),
.RandomBrightnessContrast(p=0.3),

A.Compose ([
.HorizontalFlip(p=0.5),
.Rotate(limit=30, p=0.5),
.RandomBrightnessContrast(p=0.5),
.GaussNoise(p=0.3),
.Cutout(num_holes=8, max h size=16, max w size=16, p=0.5),

1)

update epoch(self, epoch):
self.current_epoch = epoch

Multi-Modal Augmentation

Cross-modal augmentation: Augment multiple modalities consistently

Example: Image + Text

multimodal augment(image, caption):
“""Augment image and caption together."""

random. random() < 0.5:
image = horizontal flip(image)

caption = flip spatial words(caption)

Audio + Text (speech recognition):

audio text augment(audio, transcript):
“""Augment audio and transcript together."""

random.uniform(0.9, 1.1)
change speed(audio, speed)

speed
audio

Foundation Model-Based Augmentation

Stable Diffusion for augmentation:

diffusers StableDiffusionPipeline

pipe = StableDiffusionPipeline.from pretrained("stabilityai/stable-diffusion-2-1")

Benefits:

e Semantically meaningful variations
e Can generate rare classes

» High visual quality

Challenges:

» Expensive (GPU, time)

e May generate out-of-distribution samples

* Need careful prompt engineering 77

Augmentation Transferability

Question: Do augmentations learned on one dataset transfer to others?
Empirical findings:

ImageNet - Other Vision Tasks:

* AutoAugment policies from ImageNet work well on CIFAR, SVHN

e Transferability: ~80-90% of performance
Natural Images - Medical Images:
e Standard augmentations (rotation, flip) transfer well

» Advanced (CutMix, MixUp) less effective
e Transferability: ~60-70%

Practical implications:

(S

Advanced Augmentation Summary

Theoretical Foundations:

Invariance and equivariance

Manifold hypothesis

Vicinal risk minimization (Mixup)

Consistency regularization

Advanced Mixing Strategies:

e Mixup, CutMix, MoEXx
o SaliencyMix, PuzzleMix

e Class-balanced mixing

Modern Approaches:

e Diffusion models for augmentation 79

Interview Questions

Common interview questions on data augmentation:

1. "When does data augmentation help and when can it hurt?"

o Helps: Limited training data, need invariance to transformations
o Hurts: Unrealistic transformations (upside-down text), excessive augmentation creating distribution shift

o Key: Augmentations should preserve label meaning
2. "What is Mixup and why does it work?"

o Mixup: Blend two images and their labels (e.g., 70% cat + 30% dog)
o Works because: Vicinal risk minimization - smooth decision boundaries
o Forces model to be less confident, reduces overfitting

o Especially effective for calibration and adversarial robustness

80

LCOAELCENWEVE

1. Augmentation expands effective training data

o Same images, different views - better generalization
2. Choose augmentations that preserve semantics

o Flip a cat? Still a cat. Flip text? Unreadable
3. Domain-specific strategies matter

o Images: geometric + color transforms
o Text: synonyms, back-translation

o Audio: time stretch, pitch shift
4. Start simple, measure impact

o Basic transforms often work well

o Always validate on held-out data

81
Next week: Using LLMs for feature extraction

Questions?

Lab: Implement and compare augmentation strategies
Measure impact on model performance

