Building Your First ML Models

Week 7 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

Part 1: The Big Picture

What does it mean to "build" an ML model?

Remember Our Netflix Journey?

: Collected movie data (APIs, scraping)
: Cleaned and organized it (Pandas)
: Labeled movie success/failure (annotation)
: Made labeling efficient (active learning)
: Got more data (augmentation)
: Used LLMs to help (APIs)
i
: NOW WE BUILD THE MODEL'!

We finally have good data. Time to predict!

What Are We Predicting?

Our Netflix Problem:
Given movie features — Predict if it will be successful

INPUT (What we know) OUTPUT (What we predict)

Genre: Action

Director: Nolan

Runtime: 148 mins
0000000000017

|
|
|
Budget: $150M -~ SUCCESS or FAILURE? |
|
|

This is called Classification (putting things in categories)

Two Types of Predictions

CLASSIFICATION REGRESSION
Predict a CATEGORY Predict a NUMBER
e Success / Failure e $500M revenue
e Spam / Not Spam « 7.5 rating

e Cat / Dog / Bird 25°C temperature

"Which box does this go in?" "How much / How many?"

Today: We'll focus on classification (predicting movie success)

The ML Workflow (Simple Version)

|
Your Data |
(movies.csv) |

|

\{

Split Data «— Training set + Test set

v

Train Model «— Model learns patterns

Simple! But the devil is in the details...

Part 2: Starting Simple - Baseline Models

Why you should never start with deep learning

The Temptation

You: "l want to predict movie success!"

Internet: "Use a 175-billion parameter neural network!"

You: "Sounds cool! Let me try..."

3 hours later: Nothing works. GPU out of memory. Confused.

Lesson: Don't start with the fanciest tool. Start simple!

What is a Baseline?

A baseline is the simplest possible solution that works.

BASELINE EXAMPLES

Task: Predict if movie succeeds

Dumb Baseline: "Just predict the most common outcome"
If 70% of movies succeed - always say SUCCESS
Accuracy: 70% (for freel!l)

Simple Model: Logistic Regression
(One line of code, 80% accuracy?)

Complex Model: Deep Neural Network
(1000 lines of code, 82% accuracy?)

Is that 2% worth 100x complexity?

Why Baselines Matter

Scenario 1: You build a fancy model, get 85% accuracy.

e "Wow, my model is amazing!"
e Reality: A baseline gets 84% - you only improved by 1%

* All that complexity for almost nothing

Scenario 2: You build a fancy model, get 85% accuracy.

* Baseline gets 60% - you improved by 25%!

e That complexity was worth it!

Baselines give you a reference point. Without one, you can't know if your model is actually good.

10

The Complexity Ladder

Always climb the complexity ladder one step at a time. Start with the simplest model. Only move up if it
doesn't meet your needs. Each step adds complexity, debugging time, and potential failure points.

Complexity Ladder:

. Deep Neural Network «— Only if you REALLY need it
. Gradient Boosting (XGBoost)

. Random Forest

. Logistic Regression «— Start here!

. Majority Class «— Your baseline floor

Time to implement: 1 hour - 1 day - 1 week - 1 month
Explainability: High e——F Low

Most real-world problems are solved on steps 2-3, not step 5.

1

The Simplest Baseline: "Just Guess"

dumb predictor(movie):
"SUCCESS"

This is called a "Majority Class Classifier"

sklearn.dummy DummyClassifier
baseline = DummyClassifier(strategy='most frequent')
baseline.fit(X train, y train)

accuracy = baseline.score(X test, y test)
print(f"Dumb baseline accuracy: {accuracy:.1%}")

Any real model must beat this!

Baseline Model 1: Logistic Regression

Think of it as: A weighing scale for features

Feature i Contribution

Budget ($M) . +45
Star Power . +4
Is Sequel . +0.2
Is January Release -0. 0

If Total > 0 - Predict SUCCESS
If Total < 0 - Predict FAILURE

It just adds up weighted features!

Logistic Regression in Code

sklearn.linear model LogisticRegression
sklearn.model selection train test split

X train, X test, y train, y test = train_ test split(
features, labels, test size=0.2, random state=42

model = LogisticRegression()
model.fit(X train, y train)

accuracy = model.score(X test, y test)
print(f"Logistic Regression accuracy: {accuracy:.1%}")

That's it! A working ML model in 4 lines.

Baseline Model 2: Decision Tree

Think of it as: A flowchart of yes/no questions

Is Budget > $100M?
\
\[0
\
Is Sequel? Has Star Actor?
/ \ / \
YES \[0 YES \[0
/ \ / \
SUCCESS Is Summer? FAILURE SUCCESS
/ \
YES NO
/ \
SUCCESS FAILURE

Humans can actually read and understand this!

Decision Tree in Code

sklearn.tree DecisionTreeClassifier

tree = DecisionTreeClassifier(max _depth=5)
tree.fit(X train, y train)

accuracy = tree.score(X test, y test)
print(f"Decision Tree accuracy: {accuracy:.1%}")

You can even visualize it:

sklearn.tree plot tree
matplotlib.pyplot plt

plt.figure(figsize=(20, 10))
plot tree(tree, feature names=feature names, filled=
plt.show()

Which Baseline to Use?

Your Situation Recommended Baseline

Just starting
Need to explain to your boss
Mixed data (humbers + categories)

Want best performance

Logistic Regression - fast, simple, often works well
Decision Tree - you can see the rules
Random Forest - handles everything

AutoML - we'll learn this soon!

17

Baseline Model 3: Random Forest

Think of it as: Asking 100 decision trees and taking a vote

"I think SUCCESS" —
"I think FAILURE"
"I think SUCCESS" |
"I think SUCCESS" — VOTE: SUCCESS wins'!
|
|
—

"I think FAILURE" (3 vs 2)

100: "I think SUCCESS"

Wisdom of crowds: Many weak learners - One strong learner

Random Forest in Code

sklearn.ensemble RandomForestClassifier

forest = RandomForestClassifier(n estimators=100, random state=42)
forest.fit(X train, y train)

accuracy = forest.score(X test, y test)
print(f"Random Forest accuracy: {accuracy:.1%}")

Often the best simple model! Very hard to beat.

19

Part 3: Cross-Validation

How to really know if your model is good

20

The Problem with One Test Set

You split your data once: 80% training, 20% test
Your model gets 85% on the test set. Great... right?

But wait:

 What if you got "lucky" with that split?
* What if the test set happened to be easy?

* What if all the hard examples ended up in training?

One test set = one roll of the dice. We need something more reliable.

21

The Solution: Cross-Validation

Idea: Test on EVERY part of your data (not just 20%)

5-FOLD CROSS-VALIDATION

Fold 1: [TEST][Train][Train][Train][Train] Accuracy:
Fold 2: [Train] [TEST][Train][Train][Train] Accuracy:
Fold 3: [Train][Train] [TEST][Train][Train] Accuracy:
Fold 4: [Train][Train][Train] [TEST][Train] Accuracy:
Fold 5: [Train][Train][Train][Train] [TEST] Accuracy:

Average: 83% + 1.5%

Now we know: "My model gets ~83% accuracy, give or take 1.5%"

Cross-Validation: Visual Intuition

Think of it like a rotating exam schedule:

Split 1 ' Split 3 Split 4

A | (exam) study
|

I |

Student | BB B i i | & & E |
| (
|

Student |

B |(study)
|

B = Test (exam) % = Train (study)

Every data point gets tested exactly once!

Cross-Validation in Code

sklearn.model selection cross val score

model = RandomForestClassifier(n estimators=100)

scores = cross val score(model, X, y, cv=5)

print(f"Scores for each fold: {scores}")
print(f"Average accuracy: {scores.mean():.1%}")
print(f"Standard deviation: {scores.std():.1%}")

Scores for each fold: [0.82, 0.85, 0.84, 0.81, 0.83]
Average accuracy: 83.0%
Standard deviation: 1.5%

Why Cross-Validation Matters

“Model | Single Test | 5-FaldCV

Logistic Regression 78% 76% £ 2%

Decision Tree 82% 75% = 5% ~ High variance!

Random Forest 84% 83% £ 1% ~ Most stable!
Insights:

» Decision Tree looked good on one test, but it's unstable (£5%!)
 Random Forest is not only accurate but consistent

 Cross-validation reveals the truth!

25

Part 4: Hyperparameter Tuning

Making your model better with the right settings

26

What Are Hyperparameters?

Parameters: Values the model learns from data (weights, biases)
Hyperparameters: Values YOU choose before training

Example - Random Forest:

e n _estimators : How many trees? (10? 100? 500?)
* max_depth : How deep can each tree grow? (3? 10? unlimited?)

e min samples split : Minimum samples to split a node?

model = RandomForestClassifier(
n estimators=100,

max_ depth=10,
min samples split=5

27

Why Hyperparameters Matter

Same model, different hyperparameters - very different results

10 3 72%
100 5 79%
100 10 82%
500 None 84%

The right hyperparameters can improve your model by 10%+

But how do you find the right values?

28

Strategy 1: Grid Search

Idea: Try every combination and pick the best

sklearn.model selection GridSearchCV

param grid = {
'n estimators': [50, 100, 200],
'max_depth': [5, 10, 20,]

grid search = GridSearchCV(
RandomForestClassifier(),
param grid,
cv=>5

)

grid search.fit(X, vy)

Grid Search: The Problem

3 hyperparameters x 4 values each = 64 combinations

Each combination needs 5-fold CV = 320 model trainings!

2 3 9

3 4 64

4 S 625
S)) 3,125

Grid search doesn't scale well.

30

Strategy 2: Random Search

Idea: Don't try everything - randomly sample combinations

sklearn.model selection RandomizedSearchCV
scipy.stats randint

param dist = {
'‘'n_estimators': randint(50, 500),
‘max_depth': randint(3, 30),
‘min_samples split': randint(2, 20)

random search = RandomizedSearchCV(
RandomForestClassifier(),
param dist,
n iter=20,
cv=>5

Surprisingly effective! Often finds good solutions faster than grid search.

Hyperparameter Tuning Tips

Start with defaults - sklearn's defaults are usually reasonable

Tune the important ones first:

e Random Forest: n estimators , max depth
e Decision Tree: max depth, min samples split
» Logistic Regression: C (regularization strength)

Use cross-validation - always! Never tune on test set.

Don't over-tune - spending days for +0.5% accuracy is usually not worth it

Or... just use AutoML (coming up next!)

32

Part 5: AutoML - Let the Computer Do It

The lazy (smart) way to build models

33

The Problem with Manual ML

The typical manual workflow:

. Try Logistic Regression... okay

. Try Decision Tree... not great

. Try Random Forest... better

. Try XGBoost... hmm, similar

. Try Neural Network... takes forever

. Tune hyperparameters for each one...

. Try different feature combinations...

00O N O o B~ W N PP

. Repeat steps 1-7 many times...

Time spent: 3 days. Hair remaining: None.

There has to be a better way!

34

Enter AutoML

AutoML = Automatic Machine Learning
You: "Here's my data. Give me the best model."

AutoML: "On it! Let me try 50 different models, tune their parameters, combine the best ones, and give you a
super-ensemble.”

You: goes to get coffee
AutoML: "Done! Here's a model with 87% accuracy."

This is not magic. It just automates what experts do manually.

B85

AutoGluon: AutoML Made Easy

AutoGluon (by Amazon) is one of the best AutoML tools.

What it does automatically:

1. Handles missing values

2. Encodes categorical features

3. Trains multiple model types (Random Forest, XGBoost, LightGBM, Neural Nets...)
4. Tunes hyperparameters

5. Creates an ensemble of the best models

6. Uses cross-validation internally

All with 3 lines of code!

36

AutoGluon in 3 Lines of Code

autogluon.tabular TabularPredictor

predictor = TabularPredictor(label="'success"')

predictor.fit(train data)

predictions = predictor.predict(test data)

Seriously. That's the entire code.

2/

What Happens Inside AutoGluon?

Input: Your CSV file

V Step 1: Analyze data types (hnumbers, text, dates)
{ Step 2: Preprocess features automatically

{ Step 3: Train 10+ different model types

{ Step 4: Cross-validate each model

V Step 5: Stack models together (ensemble)

Output: One super-model that combines the best of all

38

AutoGluon Leaderboard

After training, you can see how each model performed:

predictor.leaderboard(test data)

model score val fit time
© WeightedEnsemble L2 0.87 120s
1 CatBoost 0.85 45s
p LightGBM 0.84 30s
3 XGBoost 0.83 50s
4
5
§)

RandomForest 0.82 25s
NeuralNetFastAI 0.80 90s
LogisticRegression 0.76 5s

The ensemble combines the best models!

When to Use AutoMML

Great for:

Quick prototyping ("Is ML even useful for this?")

Competitions (Kaggle)

When you don't have ML expertise

Setting a strong baseline to beat

Be careful:

Takes a long time to train (10 mins to hours)

Uses lots of memory

Hard to explain ("Why did it predict this?")

Model might be too big for production

40

AutoGluon with Time Limit

Don't have all day? Set a time limit:

predictor = TabularPredictor(label="'success"')

predictor.fit(train data, time limit=300)

More time = Better models (usually)

What AutoGluon Can Do

1 minute Quick baselines (RF, LR)
5 minutes Good models (+ XGBoost, LightGBM)
30 minutes Great models (+ Neural Nets, tuning)

2+ hours Best possible (full tuning, stacking)

41

Part 6: Transfer Learning

Standing on the shoulders of giants

42

The Problem with Training from Scratch

Scenario: You want to classify movie posters (images)

_ Train from Scratch Use Pretrained Model

Data needed 1 million images

Hardware 10 GPUs for a week
Expertise ML PhD
Cost $10,000+

The choice is obvious!

1,000 images

1 GPU for an hour
Basic Python

~$1

43

Transfer Learning: The Analogy

Someone who has never played any sport:

e Learning tennis takes 6 months

e Starts from zero

Someone who plays badminton:

e Learning tennis takes 2 months
e Already knows: hand-eye coordination, racket grip, court movement

e Just needs to learn: different swing, ball bounce

The badminton player transfers their skills!

Same idea in ML: Use knowledge from one task for another.

44

How Transfer Learning Works for Images

Google trained a model on 14 MILLION images (ImageNet).

What it learned (from simple to complex):

1 (bottom) Edges, lines horizontal, vertical, diagonal
2 Textures fur, metal, wood

3 Shapes circles, squares, curves

4 Parts eyes, wheels, leaves

S5 (top) Objects cats, cars, trees

Lower layers = Universal (useful for any image task)
Higher layers = Task-specific (cats vs dogs vs cars)

45

Transfer Learning Strategy

Step 1: Take a pretrained model (trained on millions of images)

Step 2: Remove the last layer (the "head")

e Original: predicts 1000 ImageNet categories

 We don't need "cat", "dog", "airplane"

Step 3: Add our own head

* New layer: predicts OUR categories

* Movie poster - "Action", "Comedy", "Drama"

Step 4: Train only the new head (freeze everything else)

» Very fast! (minutes instead of days)

46

Transfer Learning Visualized

PRETRAINED MODEL YOUR NEW MODEL
(from Google) (for movies)

|
Cat/Dog/Car —REMOVE—» Action/Comedy| « NEW (train this)

(1000) /Drama |
|

< FROZEN

« FROZEN

Only train the top layer. Keep everything else frozen.

Transfer Learning for Text (LLMs)

Same idea works for text!
BERT (by Google) was trained on ALL of Wikipedia + Books.

What it learned:

Grammar and syntax

Word meanings and relationships

Common knowledge ("Paris is in France")

Context understanding

Your task: Classify movie reviews as Positive/Negative

Transfer: Use BERT's language understanding, just teach it your specific task.

48

Fine-Tuning: A Deeper Transfer

Feature Extraction: Freeze pretrained layers, only train new head

Fine-Tuning: Also slightly update the pretrained layers

Head Train Train

Top layers Frozen Train slowly
Bottom layers = Frozen Frozen
Speed Fast Slower
Data needed Less More
Accuracy Good Better

Start with feature extraction. Fine-tune only if you heed more accuracy and have enough data.

49

When to Use Transfer Learning

Data Type | Use Transfer Learning? | Recommended Models

Images Yes! ResNet, EfficientNet, ViT
Text Yes! BERT, RoBERTa, or LLM APIs
Audio Yes! Whisper, Wav2Vec

Tabular Rarely Use AutoML instead

Rule of thumb:

e Images, text, audio —» Transfer learning

e Tabular data (spreadsheets) — AutoML (AutoGluon)

50

Transfer Learning Example Code

transformers pipeline

classifier = pipeline("sentiment-analysis")

reviews = [
“This movie was absolutely fantastic!",
"Worst film I've ever seen.",
"It was okay, nothing special.”

review reviews:
result = classifier(review)
print(f"{review[:30]}... - {result[O]['label']}")

This movie was absolutely fant... - POSITIVE
Worst film I've ever seen.... - NEGATIVE
It was okay, nothing special.... - NEGATIVE o1

Part 7: Putting It All Together

A complete workflow

52

The Complete Workflow

Step 1: Understand your data

* What type? (tabular, images, text)

e How much? (100 samples vs 1 million)

Step 2: Create a baseline
e Tabular - Logistic Regression or Random Forest
* Images/Text - Pretrained model (transfer learning)

Step 3: Evaluate with cross-validation

* Get reliable accuracy estimates

» Understand variance in performance

Step 4: Improve

SiE;

Netflix Movie Prediction: Full Example

pandas pd
sklearn.model selection cross val score
sklearn.ensemble RandomForestClassifier
autogluon.tabular TabularPredictor

movies = pd.read csv('movies.csv')

rf = RandomForestClassifier(n estimators=100)
baseline scores = cross val score(rf, X, y, cv=5)

print(f"Baseline (RF): {baseline scores.mean():.1%} + {baseline scores.std():.1%}")

predictor = TabularPredictor(label="'success"')
predictor.fit(movies, time limit=300)

What Good Accuracy Looks Like

Random guessing 50%

Majority class baseline 60%
Simple model (Logistic Reg) 72%
Better model (Random Forest) 78%
AutoML (AutoGluon) 82%

State-of-the-art 85%

Key questions to ask:

* Did you beat random guessing?
e Did you beat majority class?

e Is the improvement worth the complexity?

Note: 82% might be amazing for some problems and terrible for others. Context matters! 55

LCOAELCENWEVE

1. Always start with a baseline

o Simple models are your reference point

o You can't know if fancy is better without simple first
2. Use cross-validation

o One test set can be misleading

o 5-fold CV gives reliable estimates
3. Tune hyperparameters (or use AutoML)

o Grid search, random search, or AutoGluon

o Can improve accuracy by 10%+
4. Use transfer learning for images/text

o Don't train from scratch

o Pretrained models save time and work better
56

Common Mistakes to Avoid

Starting with deep learning before trying simple models

Evaluating on only one train/test split

Tuning hyperparameters on the test set (this is cheating!)

Training image/text models from scratch with small data

Ilgnoring the baseline ("My model gets 80%!" ...vs what?)

Over-engineering for tiny improvements (+0.5% isn't worth 10x complexity)

SV

Next Week Preview

Week 8: Model Evaluation & Deployment

Confusion matrices (understanding errors)

Precision, Recall, F1 (beyond accuracy)

When accuracy is misleading

Deploying your model to production

You've built the model. Now how do you know it's REALLY good?

58

Lab Preview

This week's hands-on exercises:

1. Build baselines: Compare Logistic Regression, Decision Tree, Random Forest
2. Cross-validate: Use 5-fold CV to get reliable estimates

3. Tune hyperparameters: Use GridSearchCV and RandomizedSearchCV

4. Try AutoGluon: Let it find the best model for Netflix data

5. Transfer learning demo: Use a pretrained model for text classification

All code will be provided. Focus on understanding!

59

Interview Questions

Common interview questions on model development:

1. "Why is cross-validation important?"

o Single train/test split can be lucky or unlucky
o CV gives average performance over multiple splits
o Tells you both mean AND variance of your model

o Standard: 5-fold or 10-fold for most problems
2. "When would you use Random Forest vs Gradient Boosting?"

o Random Forest: Faster training, parallelizable, good baseline
o Gradient Boosting: Often more accurate, but slower and easier to overfit
o RF for quick prototypes; GB when squeezing last % of accuracy

o Both: Handle missing values poorly without preprocessing

60

Questions?

Today's key concepts:

Baseline models (start simple!)

Cross-validation (reliable evaluation)

Hyperparameter tuning (GridSearch, RandomSearch)

AutoML (AutoGluon)

Transfer learning (for images/text)

Remember: Simple first, complex only if needed!

61

