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Part 1: The Big PicturePart 1: The Big Picture

What does it mean to "build" an ML model?
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Remember Our Netflix Journey?Remember Our Netflix Journey?

Week 1: Collected movie data (APIs, scraping)

Week 2: Cleaned and organized it (Pandas)

Week 3: Labeled movie success/failure (annotation)

Week 4: Made labeling efficient (active learning)

Week 5: Got more data (augmentation)

Week 6: Used LLMs to help (APIs)

        ↓

Week 7: NOW WE BUILD THE MODEL! 

We finally have good data. Time to predict!
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What Are We Predicting?What Are We Predicting?

Our Netflix Problem:

Given movie features → Predict if it will be successful

┌─────────────────────────────────────────────────────────────────┐

│  INPUT (What we know)           OUTPUT (What we predict)        │

│  ─────────────────────          ────────────────────────        │

│  • Genre: Action                                                │

│  • Budget: $150M                 → SUCCESS or FAILURE?          │

│  • Director: Nolan                                              │

│  • Runtime: 148 mins                                            │

└─────────────────────────────────────────────────────────────────┘

This is called Classification (putting things in categories)
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Two Types of PredictionsTwo Types of Predictions

┌─────────────────────────────────┐  ┌─────────────────────────────────┐

│       CLASSIFICATION            │  │         REGRESSION              │

│                                 │  │                                 │

│   Predict a CATEGORY            │  │   Predict a NUMBER              │

│                                 │  │                                 │

│   • Success / Failure           │  │   • $500M revenue               │

│   • Spam / Not Spam             │  │   • 7.5 rating                  │

│   • Cat / Dog / Bird            │  │   • 25°C temperature            │

│                                 │  │                                 │

│   "Which box does this go in?"  │  │   "How much / How many?"        │

└─────────────────────────────────┘  └─────────────────────────────────┘

Today: We'll focus on classification (predicting movie success)
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The ML Workflow (Simple Version)The ML Workflow (Simple Version)

    ┌──────────────┐

    │  Your Data   │

    │  (movies.csv)│

    └──────┬───────┘

           │

           ▼

    ┌──────────────┐

    │ Split Data   │  ←── Training set + Test set

    └──────┬───────┘

           │

           ▼

    ┌──────────────┐

    │ Train Model  │  ←── Model learns patterns

    └──────┬───────┘

           │

           ▼

Simple! But the devil is in the details...
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Part 2: Starting Simple - Baseline ModelsPart 2: Starting Simple - Baseline Models

Why you should never start with deep learning
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The TemptationThe Temptation

You: "I want to predict movie success!"

Internet: "Use a 175-billion parameter neural network!"

You: "Sounds cool! Let me try..."

3 hours later: Nothing works. GPU out of memory. Confused.

Lesson: Don't start with the fanciest tool. Start simple!

8



What is a Baseline?What is a Baseline?

A baseline is the simplest possible solution that works.

┌───────────────────────────────────────────────────────────────┐

│                    BASELINE EXAMPLES                          │

├───────────────────────────────────────────────────────────────┤

│                                                               │

│  Task: Predict if movie succeeds                              │

│                                                               │

│  Dumb Baseline: "Just predict the most common outcome"        │

│                 If 70% of movies succeed → always say SUCCESS │

│                 Accuracy: 70% (for free!)                     │

│                                                               │

│  Simple Model:  Logistic Regression                           │

│                 (One line of code, 80% accuracy?)             │

│                                                               │

│  Complex Model: Deep Neural Network                           │

│                 (1000 lines of code, 82% accuracy?)           │

│                                                               │

Is that 2% worth 100x complexity?
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Why Baselines MatterWhy Baselines Matter

Scenario 1: You build a fancy model, get 85% accuracy.

"Wow, my model is amazing!"

Reality: A baseline gets 84% → you only improved by 1%

All that complexity for almost nothing

Scenario 2: You build a fancy model, get 85% accuracy.

Baseline gets 60% → you improved by 25%!

That complexity was worth it!

Baselines give you a reference point. Without one, you can't know if your model is actually good.

10



The Complexity LadderThe Complexity Ladder

Always climb the complexity ladder one step at a time. Start with the simplest model. Only move up if it

doesn't meet your needs. Each step adds complexity, debugging time, and potential failure points.

Complexity Ladder:

     5. Deep Neural Network  ←── Only if you REALLY need it

     4. Gradient Boosting (XGBoost)

     3. Random Forest

     2. Logistic Regression  ←── Start here!

     1. Majority Class       ←── Your baseline floor

Time to implement:  1 hour → 1 day → 1 week → 1 month

Explainability:     High   ←──────────────────→  Low

Most real-world problems are solved on steps 2-3, not step 5.
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The Simplest Baseline: "Just Guess"The Simplest Baseline: "Just Guess"

# The dumbest model possible

def dumb_predictor(movie):

    return "SUCCESS"  # Always predict success

# If 70% of movies succeed, this gets 70% accuracy!

This is called a "Majority Class Classifier"

from sklearn.dummy import DummyClassifier

# Create the dumbest possible classifier

baseline = DummyClassifier(strategy='most_frequent')

baseline.fit(X_train, y_train)

accuracy = baseline.score(X_test, y_test)

print(f"Dumb baseline accuracy: {accuracy:.1%}")

Any real model must beat this!
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Baseline Model 1: Logistic RegressionBaseline Model 1: Logistic Regression

Think of it as: A weighing scale for features

┌─────────────────────────────────────────────────────────────────┐

│                                                                 │

│   Feature             Weight      Value       Contribution      │

│   ─────────────────   ──────      ─────       ────────────      │

│   Budget ($M)         +0.3        150         +45               │

│   Star Power          +0.5        8           +4                │

│   Is Sequel           +0.2        1           +0.2              │

│   Is January Release  -0.4        0           0                 │

│                                               ─────             │

│                                   Total:      +49.2             │

│                                                                 │

│   If Total > 0 → Predict SUCCESS                                │

│   If Total < 0 → Predict FAILURE                                │

│                                                                 │

└─────────────────────────────────────────────────────────────────┘

It just adds up weighted features!
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Logistic Regression in CodeLogistic Regression in Code

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

# Split data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(

    features, labels, test_size=0.2, random_state=42

)

# Create and train the model (2 lines!)

model = LogisticRegression()

model.fit(X_train, y_train)

# Evaluate

accuracy = model.score(X_test, y_test)

print(f"Logistic Regression accuracy: {accuracy:.1%}")

That's it! A working ML model in 4 lines.
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Baseline Model 2: Decision TreeBaseline Model 2: Decision Tree

Think of it as: A flowchart of yes/no questions

                         Is Budget > $100M?

                        /                  \

                      YES                   NO

                      /                      \

               Is Sequel?              Has Star Actor?

               /        \               /          \

             YES        NO            YES          NO

             /           \            /             \

         SUCCESS      Is Summer?   FAILURE      SUCCESS

                       /     \

                     YES     NO

                     /        \

                SUCCESS    FAILURE

Humans can actually read and understand this!
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Decision Tree in CodeDecision Tree in Code

from sklearn.tree import DecisionTreeClassifier

# Create and train

tree = DecisionTreeClassifier(max_depth=5)  # Don't go too deep!

tree.fit(X_train, y_train)

# Evaluate

accuracy = tree.score(X_test, y_test)

print(f"Decision Tree accuracy: {accuracy:.1%}")

You can even visualize it:

from sklearn.tree import plot_tree

import matplotlib.pyplot as plt

plt.figure(figsize=(20, 10))

plot_tree(tree, feature_names=feature_names, filled=True)

plt.show()
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Which Baseline to Use?Which Baseline to Use?

Your Situation Recommended Baseline

Just starting Logistic Regression - fast, simple, often works well

Need to explain to your boss Decision Tree - you can see the rules

Mixed data (numbers + categories) Random Forest - handles everything

Want best performance AutoML - we'll learn this soon!
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Baseline Model 3: Random ForestBaseline Model 3: Random Forest

Think of it as: Asking 100 decision trees and taking a vote

┌─────────────────────────────────────────────────────────────────┐

│                                                                 │

│   Tree 1: "I think SUCCESS"  ──┐                                │

│   Tree 2: "I think FAILURE"    │                                │

│   Tree 3: "I think SUCCESS"    │                                │

│   Tree 4: "I think SUCCESS"    ├──►  VOTE: SUCCESS wins!        │

│   Tree 5: "I think FAILURE"    │           (3 vs 2)             │

│   ...                          │                                │

│   Tree 100: "I think SUCCESS"──┘                                │

│                                                                 │

└─────────────────────────────────────────────────────────────────┘

Wisdom of crowds: Many weak learners → One strong learner
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Random Forest in CodeRandom Forest in Code

from sklearn.ensemble import RandomForestClassifier

# Create and train

forest = RandomForestClassifier(n_estimators=100, random_state=42)

forest.fit(X_train, y_train)

# Evaluate

accuracy = forest.score(X_test, y_test)

print(f"Random Forest accuracy: {accuracy:.1%}")

Often the best simple model! Very hard to beat.
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Part 3: Cross-ValidationPart 3: Cross-Validation

How to really know if your model is good
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The Problem with One Test SetThe Problem with One Test Set

You split your data once: 80% training, 20% test

Your model gets 85% on the test set. Great... right?

But wait:

What if you got "lucky" with that split?

What if the test set happened to be easy?

What if all the hard examples ended up in training?

One test set = one roll of the dice. We need something more reliable.
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The Solution: Cross-ValidationThe Solution: Cross-Validation

Idea: Test on EVERY part of your data (not just 20%)

┌─────────────────────────────────────────────────────────────────┐

│                     5-FOLD CROSS-VALIDATION                     │

├─────────────────────────────────────────────────────────────────┤

│                                                                 │

│  Fold 1: [TEST][Train][Train][Train][Train]  → Accuracy: 82%    │

│  Fold 2: [Train][TEST][Train][Train][Train]  → Accuracy: 85%    │

│  Fold 3: [Train][Train][TEST][Train][Train]  → Accuracy: 84%    │

│  Fold 4: [Train][Train][Train][TEST][Train]  → Accuracy: 81%    │

│  Fold 5: [Train][Train][Train][Train][TEST]  → Accuracy: 83%    │

│                                                                 │

│  Average: 83% ± 1.5%                                            │

│                                                                 │

└─────────────────────────────────────────────────────────────────┘

Now we know: "My model gets ~83% accuracy, give or take 1.5%"
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Cross-Validation: Visual IntuitionCross-Validation: Visual Intuition

Think of it like a rotating exam schedule:

          Split 1        Split 2        Split 3        Split 4        Split 5

        ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐

Student │ █ █ █ █ │    │ ░ █ █ █ │    │ ░ ░ █ █ │    │ ░ ░ ░ █ │    │ ░ ░ ░ ░ │

  A     │(exam)   │    │(study)  │    │(study)  │    │(study)  │    │(study)  │

        └─────────┘    └─────────┘    └─────────┘    └─────────┘    └─────────┘

        ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐    ┌─────────┐

Student │ ░ ░ ░ ░ │    │ █ █ █ █ │    │ ░ ░ ░ ░ │    │ ░ ░ ░ ░ │    │ ░ ░ ░ ░ │

  B     │(study)  │    │(exam)   │    │(study)  │    │(study)  │    │(study)  │

        └─────────┘    └─────────┘    └─────────┘    └─────────┘    └─────────┘

█ = Test (exam)    ░ = Train (study)

Every data point gets tested exactly once!
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Cross-Validation in CodeCross-Validation in Code

from sklearn.model_selection import cross_val_score

# Create model

model = RandomForestClassifier(n_estimators=100)

# Run 5-fold cross-validation

scores = cross_val_score(model, X, y, cv=5)

print(f"Scores for each fold: {scores}")

print(f"Average accuracy: {scores.mean():.1%}")

print(f"Standard deviation: {scores.std():.1%}")

Output:

Scores for each fold: [0.82, 0.85, 0.84, 0.81, 0.83]

Average accuracy: 83.0%

Standard deviation: 1.5%
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Why Cross-Validation MattersWhy Cross-Validation Matters

Model Single Test 5-Fold CV

Logistic Regression 78% 76% ± 2%

Decision Tree 82% 75% ± 5% ← High variance!

Random Forest 84% 83% ± 1% ← Most stable!

Insights:

Decision Tree looked good on one test, but it's unstable (±5%!)

Random Forest is not only accurate but consistent

Cross-validation reveals the truth!

25



Part 4: Hyperparameter TuningPart 4: Hyperparameter Tuning

Making your model better with the right settings
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What Are Hyperparameters?What Are Hyperparameters?

Parameters: Values the model learns from data (weights, biases)

Hyperparameters: Values YOU choose before training

Example - Random Forest:

n_estimators : How many trees? (10? 100? 500?)

max_depth : How deep can each tree grow? (3? 10? unlimited?)

min_samples_split : Minimum samples to split a node?

# These are hyperparameters - YOU choose them

model = RandomForestClassifier(

    n_estimators=100,    # ← hyperparameter

    max_depth=10,        # ← hyperparameter

    min_samples_split=5  # ← hyperparameter

)
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Why Hyperparameters MatterWhy Hyperparameters Matter

Same model, different hyperparameters → very different results

n_estimators max_depth Accuracy

10 3 72%

100 5 79%

100 10 82%

500 None 84%

The right hyperparameters can improve your model by 10%+

But how do you find the right values?
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Strategy 1: Grid SearchStrategy 1: Grid Search

Idea: Try every combination and pick the best

from sklearn.model_selection import GridSearchCV

# Define what to try

param_grid = {

    'n_estimators': [50, 100, 200],

    'max_depth': [5, 10, 20, None]

}

# Try all combinations with cross-validation

grid_search = GridSearchCV(

    RandomForestClassifier(),

    param_grid,

    cv=5  # Use 5-fold CV for each combination

)

grid_search.fit(X, y)
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Grid Search: The ProblemGrid Search: The Problem

3 hyperparameters × 4 values each = 64 combinations

Each combination needs 5-fold CV = 320 model trainings!

Hyperparameters Values each Combinations

2 3 9

3 4 64

4 5 625

5 5 3,125

Grid search doesn't scale well.
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Strategy 2: Random SearchStrategy 2: Random Search

Idea: Don't try everything - randomly sample combinations

from sklearn.model_selection import RandomizedSearchCV

from scipy.stats import randint

# Define ranges to sample from

param_dist = {

    'n_estimators': randint(50, 500),

    'max_depth': randint(3, 30),

    'min_samples_split': randint(2, 20)

}

# Try 20 random combinations

random_search = RandomizedSearchCV(

    RandomForestClassifier(),

    param_dist,

    n_iter=20,  # Only try 20 combinations

    cv=5

Surprisingly effective! Often finds good solutions faster than grid search.

31



Hyperparameter Tuning TipsHyperparameter Tuning Tips

Start with defaults - sklearn's defaults are usually reasonable

Tune the important ones first:

Random Forest: n_estimators , max_depth

Decision Tree: max_depth , min_samples_split

Logistic Regression: C  (regularization strength)

Use cross-validation - always! Never tune on test set.

Don't over-tune - spending days for +0.5% accuracy is usually not worth it

Or... just use AutoML (coming up next!)
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Part 5: AutoML - Let the Computer Do ItPart 5: AutoML - Let the Computer Do It

The lazy (smart) way to build models
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The Problem with Manual MLThe Problem with Manual ML

The typical manual workflow:

1. Try Logistic Regression... okay

2. Try Decision Tree... not great

3. Try Random Forest... better

4. Try XGBoost... hmm, similar

5. Try Neural Network... takes forever

6. Tune hyperparameters for each one...

7. Try different feature combinations...

8. Repeat steps 1-7 many times...

Time spent: 3 days. Hair remaining: None.

There has to be a better way!
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Enter AutoMLEnter AutoML

AutoML = Automatic Machine Learning

You: "Here's my data. Give me the best model."

AutoML: "On it! Let me try 50 different models, tune their parameters, combine the best ones, and give you a

super-ensemble."

You: goes to get coffee

AutoML: "Done! Here's a model with 87% accuracy."

This is not magic. It just automates what experts do manually.
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AutoGluon: AutoML Made EasyAutoGluon: AutoML Made Easy

AutoGluon (by Amazon) is one of the best AutoML tools.

What it does automatically:

1. Handles missing values

2. Encodes categorical features

3. Trains multiple model types (Random Forest, XGBoost, LightGBM, Neural Nets...)

4. Tunes hyperparameters

5. Creates an ensemble of the best models

6. Uses cross-validation internally

All with 3 lines of code!
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AutoGluon in 3 Lines of CodeAutoGluon in 3 Lines of Code

from autogluon.tabular import TabularPredictor

# Step 1: Create the predictor

predictor = TabularPredictor(label='success')

# Step 2: Train on your data (that's it!)

predictor.fit(train_data)

# Step 3: Make predictions

predictions = predictor.predict(test_data)

Seriously. That's the entire code.
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What Happens Inside AutoGluon?What Happens Inside AutoGluon?

Input: Your CSV file

↓ Step 1: Analyze data types (numbers, text, dates)

↓ Step 2: Preprocess features automatically

↓ Step 3: Train 10+ different model types

↓ Step 4: Cross-validate each model

↓ Step 5: Stack models together (ensemble)

Output: One super-model that combines the best of all
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AutoGluon LeaderboardAutoGluon Leaderboard

After training, you can see how each model performed:

predictor.leaderboard(test_data)

                model  score_val  fit_time

0   WeightedEnsemble_L2     0.87      120s

1             CatBoost     0.85       45s

2             LightGBM     0.84       30s

3              XGBoost     0.83       50s

4         RandomForest     0.82       25s

5   NeuralNetFastAI     0.80       90s

6     LogisticRegression  0.76        5s

The ensemble combines the best models!
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When to Use AutoMLWhen to Use AutoML

Great for:

Quick prototyping ("Is ML even useful for this?")

Competitions (Kaggle)

When you don't have ML expertise

Setting a strong baseline to beat

Be careful:

Takes a long time to train (10 mins to hours)

Uses lots of memory

Hard to explain ("Why did it predict this?")

Model might be too big for production
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AutoGluon with Time LimitAutoGluon with Time Limit

Don't have all day? Set a time limit:

predictor = TabularPredictor(label='success')

# Only train for 5 minutes

predictor.fit(train_data, time_limit=300)  # 300 seconds = 5 mins

More time = Better models (usually)

Time Limit What AutoGluon Can Do

1 minute Quick baselines (RF, LR)

5 minutes Good models (+ XGBoost, LightGBM)

30 minutes Great models (+ Neural Nets, tuning)

2+ hours Best possible (full tuning, stacking)
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Part 6: Transfer LearningPart 6: Transfer Learning

Standing on the shoulders of giants
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The Problem with Training from ScratchThe Problem with Training from Scratch

Scenario: You want to classify movie posters (images)

Train from Scratch Use Pretrained Model

Data needed 1 million images 1,000 images

Hardware 10 GPUs for a week 1 GPU for an hour

Expertise ML PhD Basic Python

Cost $10,000+ ~$1

The choice is obvious!
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Transfer Learning: The AnalogyTransfer Learning: The Analogy

Someone who has never played any sport:

Learning tennis takes 6 months

Starts from zero

Someone who plays badminton:

Learning tennis takes 2 months

Already knows: hand-eye coordination, racket grip, court movement

Just needs to learn: different swing, ball bounce

The badminton player transfers their skills!

Same idea in ML: Use knowledge from one task for another.
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How Transfer Learning Works for ImagesHow Transfer Learning Works for Images

Google trained a model on 14 MILLION images (ImageNet).

What it learned (from simple to complex):

Layer What it Learned Examples

1 (bottom) Edges, lines horizontal, vertical, diagonal

2 Textures fur, metal, wood

3 Shapes circles, squares, curves

4 Parts eyes, wheels, leaves

5 (top) Objects cats, cars, trees

Lower layers = Universal (useful for any image task)

Higher layers = Task-specific (cats vs dogs vs cars)
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Transfer Learning StrategyTransfer Learning Strategy

Step 1: Take a pretrained model (trained on millions of images)

Step 2: Remove the last layer (the "head")

Original: predicts 1000 ImageNet categories

We don't need "cat", "dog", "airplane"

Step 3: Add our own head

New layer: predicts OUR categories

Movie poster → "Action", "Comedy", "Drama"

Step 4: Train only the new head (freeze everything else)

Very fast! (minutes instead of days)
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Transfer Learning VisualizedTransfer Learning Visualized

PRETRAINED MODEL               YOUR NEW MODEL

(from Google)                  (for movies)

┌─────────────┐                ┌──────────────┐

│ Cat/Dog/Car │  ──REMOVE──►   │ Action/Comedy│  ← NEW (train this)

│   (1000)    │                │    /Drama    │

└─────────────┘                └──────────────┘

      ↑                              ↑

┌─────────────┐                ┌──────────────┐

│   Shapes    │  ───KEEP────►  │    Shapes    │  ← FROZEN

└─────────────┘                └──────────────┘

      ↑                              ↑

┌─────────────┐                ┌──────────────┐

│    Edges    │  ───KEEP────►  │    Edges     │  ← FROZEN

└─────────────┘                └──────────────┘

Only train the top layer. Keep everything else frozen.
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Transfer Learning for Text (LLMs)Transfer Learning for Text (LLMs)

Same idea works for text!

BERT (by Google) was trained on ALL of Wikipedia + Books.

What it learned:

Grammar and syntax

Word meanings and relationships

Common knowledge ("Paris is in France")

Context understanding

Your task: Classify movie reviews as Positive/Negative

Transfer: Use BERT's language understanding, just teach it your specific task.
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Fine-Tuning: A Deeper TransferFine-Tuning: A Deeper Transfer

Feature Extraction: Freeze pretrained layers, only train new head

Fine-Tuning: Also slightly update the pretrained layers

Feature Extraction Fine-Tuning

Head Train Train

Top layers Frozen Train slowly

Bottom layers Frozen Frozen

Speed Fast Slower

Data needed Less More

Accuracy Good Better

Start with feature extraction. Fine-tune only if you need more accuracy and have enough data.
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When to Use Transfer LearningWhen to Use Transfer Learning

Data Type Use Transfer Learning? Recommended Models

Images Yes! ResNet, EfficientNet, ViT

Text Yes! BERT, RoBERTa, or LLM APIs

Audio Yes! Whisper, Wav2Vec

Tabular Rarely Use AutoML instead

Rule of thumb:

Images, text, audio → Transfer learning

Tabular data (spreadsheets) → AutoML (AutoGluon)
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Transfer Learning Example CodeTransfer Learning Example Code

from transformers import pipeline

# Load a pretrained sentiment classifier

classifier = pipeline("sentiment-analysis")

# Use it immediately - no training needed!

reviews = [

    "This movie was absolutely fantastic!",

    "Worst film I've ever seen.",

    "It was okay, nothing special."

]

for review in reviews:

    result = classifier(review)

    print(f"{review[:30]}... → {result[0]['label']}")

Output:

This movie was absolutely fant... → POSITIVE

Worst film I've ever seen.... → NEGATIVE

It was okay, nothing special.... → NEGATIVE 51



Part 7: Putting It All TogetherPart 7: Putting It All Together

A complete workflow
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The Complete WorkflowThe Complete Workflow

Step 1: Understand your data

What type? (tabular, images, text)

How much? (100 samples vs 1 million)

Step 2: Create a baseline

Tabular → Logistic Regression or Random Forest

Images/Text → Pretrained model (transfer learning)

Step 3: Evaluate with cross-validation

Get reliable accuracy estimates

Understand variance in performance

Step 4: Improve

T h t
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Netflix Movie Prediction: Full ExampleNetflix Movie Prediction: Full Example

import pandas as pd

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import RandomForestClassifier

from autogluon.tabular import TabularPredictor

# Load our movie data

movies = pd.read_csv('movies.csv')

# Baseline: Random Forest with cross-validation

rf = RandomForestClassifier(n_estimators=100)

baseline_scores = cross_val_score(rf, X, y, cv=5)

print(f"Baseline (RF): {baseline_scores.mean():.1%} ± {baseline_scores.std():.1%}")

# AutoML: Let AutoGluon do its magic

predictor = TabularPredictor(label='success')

predictor.fit(movies, time_limit=300)
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What Good Accuracy Looks LikeWhat Good Accuracy Looks Like

Model Accuracy

Random guessing 50%

Majority class baseline 60%

Simple model (Logistic Reg) 72%

Better model (Random Forest) 78%

AutoML (AutoGluon) 82%

State-of-the-art 85%

Key questions to ask:

Did you beat random guessing?

Did you beat majority class?

Is the improvement worth the complexity?

Note: 82% might be amazing for some problems and terrible for others. Context matters! 55



Key TakeawaysKey Takeaways

1. Always start with a baseline

Simple models are your reference point

You can't know if fancy is better without simple first

2. Use cross-validation

One test set can be misleading

5-fold CV gives reliable estimates

3. Tune hyperparameters (or use AutoML)

Grid search, random search, or AutoGluon

Can improve accuracy by 10%+

4. Use transfer learning for images/text

Don't train from scratch

Pretrained models save time and work better
56



Common Mistakes to AvoidCommon Mistakes to Avoid

Starting with deep learning before trying simple models

Evaluating on only one train/test split

Tuning hyperparameters on the test set (this is cheating!)

Training image/text models from scratch with small data

Ignoring the baseline ("My model gets 80%!" ...vs what?)

Over-engineering for tiny improvements (+0.5% isn't worth 10x complexity)
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Next Week PreviewNext Week Preview

Week 8: Model Evaluation & Deployment

Confusion matrices (understanding errors)

Precision, Recall, F1 (beyond accuracy)

When accuracy is misleading

Deploying your model to production

You've built the model. Now how do you know it's REALLY good?
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Lab PreviewLab Preview

This week's hands-on exercises:

1. Build baselines: Compare Logistic Regression, Decision Tree, Random Forest

2. Cross-validate: Use 5-fold CV to get reliable estimates

3. Tune hyperparameters: Use GridSearchCV and RandomizedSearchCV

4. Try AutoGluon: Let it find the best model for Netflix data

5. Transfer learning demo: Use a pretrained model for text classification

All code will be provided. Focus on understanding!
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Interview QuestionsInterview Questions

Common interview questions on model development:

1. "Why is cross-validation important?"

Single train/test split can be lucky or unlucky

CV gives average performance over multiple splits

Tells you both mean AND variance of your model

Standard: 5-fold or 10-fold for most problems

2. "When would you use Random Forest vs Gradient Boosting?"

Random Forest: Faster training, parallelizable, good baseline

Gradient Boosting: Often more accurate, but slower and easier to overfit

RF for quick prototypes; GB when squeezing last % of accuracy

Both: Handle missing values poorly without preprocessing
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Questions?Questions?

Today's key concepts:

Baseline models (start simple!)

Cross-validation (reliable evaluation)

Hyperparameter tuning (GridSearch, RandomSearch)

AutoML (AutoGluon)

Transfer learning (for images/text)

Remember: Simple first, complex only if needed!

61


