
1

Reproducibility & EnvironmentsReproducibility & Environments
Week 8 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The "Works on My Machine" ProblemThe "Works on My Machine" Problem

You built a Netflix movie predictor. It works great on your laptop.

Your friend tries to run it:

ImportError: No module named 'sklearn'

You say: "Just pip install sklearn"

ERROR: Could not find a version that satisfies the requirement sklearn

3 hours later: Still debugging Python versions, missing dependencies...

Sound familiar?

2

Why Reproducibility MattersWhy Reproducibility Matters

For you:

6 months later, you can still run your own code

Switch laptops without days of setup

Debug issues consistently

For collaboration:

Teammates can run your code immediately

No more "but it works for me!"

Onboard new team members quickly

For science:

Others can verify your results

Build on your work

T i h

3

The Reproducibility SpectrumThe Reproducibility Spectrum

Your code is only as good as its ability to run elsewhere. If no one else can run it, it might as well not exist.

Reproducibility isn't about being fancy - it's about being useful.

 Reproducibility Spectrum

Not Reproducible Fully Reproducible

 | |

 v v

[Just code] → [+ README] → [+ requirements.txt] → [+ Docker] → [+ CI/CD]

 ↓ ↓ ↓ ↓ ↓

 "What?" "Maybe..." "Probably!" "Definitely" "Automated"

Today's goal: Get you to "Probably!" or better.

4

Connection to Our Netflix ProjectConnection to Our Netflix Project

Week 1-7: Built a movie success predictor

 ↓

Week 8: Make it reproducible!

 - Anyone can run your code

 - Same results every time

 - Works on any machine

Goal: Package our Netflix project so anyone can use it.

5

Part 1: Virtual EnvironmentsPart 1: Virtual Environments

Keeping projects separate

6

The Problem: Dependency ConflictsThe Problem: Dependency Conflicts

Scenario:

Project Python TensorFlow NumPy

Netflix Predictor 3.10 2.12 1.24

Old School Project 3.8 1.15 1.19

Your System 3.11 ??? ???

Can't install both TensorFlow versions on the same system!

Solution: Give each project its own isolated environment.

7

Virtual Environments: The ConceptVirtual Environments: The Concept

Think of it like separate rooms in a house:

Your Computer

├── Project A's Room

│ └── Python 3.10, TensorFlow 2.12, NumPy 1.24

│

├── Project B's Room

│ └── Python 3.8, TensorFlow 1.15, NumPy 1.19

│

└── Living Room (system Python)

 └── Python 3.11 (don't touch this!)

Each room has its own stuff. No conflicts!

8

Creating a Virtual EnvironmentCreating a Virtual Environment

Step 1: Create the environment

python -m venv netflix_env

Step 2: Activate it

Mac/Linux

source netflix_env/bin/activate

Windows

netflix_env\Scripts\activate

Step 3: Your prompt changes

(netflix_env) $ python --version

Python 3.10.12

Now you're in the Netflix room!
9

Installing Packages in Your EnvironmentInstalling Packages in Your Environment

With the environment activated:

Install what you need

pip install pandas scikit-learn matplotlib

Check what's installed

pip list

When done, deactivate

deactivate

Key insight: Packages only install in the active environment.

Your system Python stays clean!

10

requirements.txt: Your Shopping Listrequirements.txt: Your Shopping List

Save your dependencies:

pip freeze > requirements.txt

What it creates:

numpy==1.24.3

pandas==2.0.2

scikit-learn==1.2.2

matplotlib==3.7.1

Anyone can now install exactly what you have:

pip install -r requirements.txt

11

Good vs Bad requirements.txtGood vs Bad requirements.txt

Good (pinned versions):

numpy==1.24.3

pandas==2.0.2

scikit-learn==1.2.2

Bad (unpinned):

numpy

pandas

scikit-learn

Why? Tomorrow, scikit-learn 2.0 releases with breaking changes. Your code breaks for new users, but not for you.

Pin your versions for reproducibility!

12

Conda: An AlternativeConda: An Alternative

Conda is popular in data science. It can manage:

Python versions (not just packages)

Non-Python dependencies (CUDA, C libraries)

Create environment with specific Python

conda create -n netflix python=3.10

Activate

conda activate netflix

Install packages

conda install pandas scikit-learn

Export environment

conda env export > environment.yml

Create from file

conda env create -f environment.yml 13

venv vs Conda: Which to Use?venv vs Conda: Which to Use?

Feature venv Conda

Built into Python Yes No (install separately)

Manage Python versions No Yes

Non-Python packages No Yes (CUDA, etc.)

Speed Fast Slower

File requirements.txt environment.yml

Recommendation for this course: Start with venv (simpler).

Use Conda when you need GPU/CUDA setup.

14

Part 2: Random SeedsPart 2: Random Seeds

Getting the same results every time

15

The Randomness ProblemThe Randomness Problem

Run your Netflix model training twice:

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

X_train, X_test, y_train, y_test = train_test_split(X, y)

model = RandomForestClassifier()

model.fit(X_train, y_train)

print(model.score(X_test, y_test))

Run 1: 0.82

Run 2: 0.79

Run 3: 0.84

Which result do you report?

16

What's Random in ML?What's Random in ML?

Many operations use random numbers:

1. Train/test split - which samples go where?

2. Model initialization - starting weights

3. Shuffling data - order during training

4. Dropout - which neurons to drop

5. Data augmentation - random transformations

Without control: Different results every run.

17

Setting Random SeedsSetting Random Seeds

Simple fix: Tell Python what random numbers to use.

import random

import numpy as np

from sklearn.model_selection import train_test_split

Set the seed ONCE at the start

random.seed(42)

np.random.seed(42)

Now this split is reproducible

X_train, X_test, y_train, y_test = train_test_split(

 X, y, random_state=42

)

Run it 100 times → Same split every time!

18

A Complete Seed FunctionA Complete Seed Function

import random

import numpy as np

def set_seed(seed=42):

 """Set all random seeds for reproducibility."""

 random.seed(seed)

 np.random.seed(seed)

 # If using PyTorch

 try:

 import torch

 torch.manual_seed(seed)

 torch.cuda.manual_seed_all(seed)

 except ImportError:

 pass

Why 42? It's a tradition (Hitchhiker's Guide to the Galaxy).

Any number works!

19

Don't Forget random_state!Don't Forget random_state!

Many sklearn functions have a random_state parameter:

Train/test split

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.2, random_state=42

)

Random Forest

model = RandomForestClassifier(

 n_estimators=100, random_state=42

)

Cross-validation with shuffling

cross_val_score(model, X, y, cv=5, random_state=42) #

 No!

Use a fixed KFold instead

from sklearn model selection import KFold

20

Part 3: Docker BasicsPart 3: Docker Basics

"Works on my machine" → "Works on EVERY machine"

21

Virtual Environments Aren't EnoughVirtual Environments Aren't Enough

Scenario: You share your requirements.txt, but...

Friend has different OS (Windows vs Mac vs Linux)

System libraries differ

CUDA versions conflict

Even PATH configurations vary

Virtual environments isolate Python, not the whole system.

22

Docker: Package EverythingDocker: Package Everything

Docker creates a container with:

Operating system

Python version

All libraries

Your code

Configuration

It's like shipping your entire laptop to someone!

Your Code + Python + Linux + Everything

 ↓

 Container

 ↓

 Runs identically everywhere

23

Docker ConceptsDocker Concepts

Term What It Is Analogy

Image Blueprint/template Recipe

Container Running instance Cooked dish

Dockerfile Instructions to build image Recipe card

Registry Store for images Recipe book

Workflow:

Dockerfile → (build) → Image → (run) → Container

24

Your First DockerfileYour First Dockerfile

Create a file named Dockerfile (no extension):

Start from a Python image

FROM python:3.10-slim

Set working directory

WORKDIR /app

Copy requirements first (for caching)

COPY requirements.txt .

Install dependencies

RUN pip install -r requirements.txt

Copy your code

COPY . .

Command to run

25

Building and RunningBuilding and Running

Build the image:

docker build -t netflix-predictor .

Run it:

docker run netflix-predictor

That's it! Your code runs in an isolated container.

Works on any machine with Docker installed.

26

Common Docker CommandsCommon Docker Commands

Build image

docker build -t myapp .

Run container

docker run myapp

Run interactively (get a shell)

docker run -it myapp /bin/bash

Share files between host and container

docker run -v $(pwd)/data:/app/data myapp

See running containers

docker ps

Stop a container

27

When to Use DockerWhen to Use Docker

Use Docker when:

Sharing with others on different OS

Deploying to cloud/servers

Complex dependencies (CUDA, system libraries)

Team projects

Skip Docker when:

Personal projects on one machine

Quick prototyping

Simple pure-Python code

Start with venv + requirements.txt. Add Docker when needed.

28

Part 4: Project StructurePart 4: Project Structure

Organize for reproducibility

29

A Reproducible Project StructureA Reproducible Project Structure

netflix-predictor/

├── data/

│ ├── raw/ # Original, never modified

│ └── processed/ # Cleaned data

├── models/ # Saved models

├── notebooks/ # Jupyter notebooks

├── src/ # Source code

│ ├── data.py # Data loading

│ ├── train.py # Training script

│ └── predict.py # Prediction script

├── requirements.txt # Dependencies

├── README.md # Documentation

├── .gitignore # What to ignore in Git

└── config.yaml # Configuration

30

The README: Your Project's Front DoorThe README: Your Project's Front Door

Every project needs a good README:

Netflix Movie Predictor

Predicts movie success based on features.

Setup

1. Create virtual environment:

 python -m venv venv

 source venv/bin/activate

2. Install dependencies:

 pip install -r requirements.txt

3. Download data:

 python src/download_data.py

Usage

31

Configuration FilesConfiguration Files

Don't hardcode values in your code!

Bad

learning_rate = 0.01

batch_size = 32

model_path = "/home/nipun/models/netflix.pkl"

Use a config file:

config.yaml

training:

 learning_rate: 0.01

 batch_size: 32

 epochs: 100

paths:

 model: models/netflix.pkl

 data: data/processed/

32

Loading Config FilesLoading Config Files

import yaml

def load_config(path="config.yaml"):

 with open(path) as f:

 return yaml.safe_load(f)

config = load_config()

print(config["training"]["learning_rate"]) # 0.01

Benefits:

Change settings without modifying code

Track configuration in Git

Different configs for dev/prod

33

.gitignore: What NOT to Track.gitignore: What NOT to Track

Data files (too large for Git)

data/raw/

*.csv

Models (too large)

models/*.pkl

*.pth

Environment

venv/

__pycache__/

Secrets

.env

secrets.yaml

34

Part 5: Putting It TogetherPart 5: Putting It Together

Reproducibility checklist

35

Reproducibility ChecklistReproducibility Checklist

Before sharing your project:

[] Virtual environment - venv or conda

[] requirements.txt - with pinned versions

[] Random seeds - set at script start

[] README - setup and usage instructions

[] Config file - no hardcoded values

[] .gitignore - exclude data/models

[] Test it - clone fresh and run

[] Docker (optional) - for complex setups

36

Quick Setup ScriptQuick Setup Script

Create setup.sh :

#!/bin/bash

Create virtual environment

python -m venv venv

source venv/bin/activate

Install dependencies

pip install -r requirements.txt

Download data (if needed)

python src/download_data.py

echo "Setup complete! Run: source venv/bin/activate"

Now anyone can run: bash setup.sh

37

Netflix Project: ReproducibilityNetflix Project: Reproducibility

Let's apply this to our project:

netflix-predictor/

├── data/

│ └── movies.csv

├── src/

│ ├── train.py

│ └── predict.py

├── models/

│ └── .gitkeep

├── requirements.txt

├── config.yaml

├── README.md

├── .gitignore

└── setup.sh

Now anyone can reproduce our movie predictor!

38

Key TakeawaysKey Takeaways

1. Virtual environments isolate project dependencies

Use venv or conda

Pin versions in requirements.txt

2. Random seeds ensure reproducible results

Set at script start

Use random_state parameter

3. Docker packages everything (when needed)

OS + Python + libraries + code

4. Project structure matters

README, config, .gitignore

Separate code, data, models

39

Common MistakesCommon Mistakes

Not pinning versions in requirements.txt

Forgetting random_state in train_test_split

Committing data/models to Git (use .gitignore!)

Hardcoding file paths ("/home/nipun/...")

No README (how do I run this?)

Testing only on your machine

The test: Can a friend run your code from scratch?

40

Lab PreviewLab Preview

This week's hands-on:

1. Create a virtual environment for your Netflix project

2. Generate requirements.txt with pinned versions

3. Add random seeds to your training script

4. Create a proper README

5. Write a Dockerfile (optional bonus)

6. Have a friend test your setup!

41

Interview QuestionsInterview Questions

Common interview questions on reproducibility:

1. "How would you ensure your ML experiments are reproducible?"

Pin all dependency versions in requirements.txt

Set random seeds (Python, NumPy, PyTorch/TensorFlow)

Version control data with DVC or similar

Use config files instead of hardcoded values

Document environment (Python version, OS)

2. "What is Docker and why use it for ML?"

Container packages code + dependencies + environment

"Works on my machine" → "Works everywhere"

Consistent dev/prod environments

Easy deployment and scaling
42

Questions?Questions?

Today's key concepts:

Virtual environments (venv, conda)

requirements.txt

Random seeds

Docker basics

Project structure

Remember: Reproducibility is a gift to your future self!

43

