Reproducibility & Environments
Week 8 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The "Works on My Machine" Problem

You built a Netflix movie predictor. It works great on your laptop.

Your friend tries to run it:

ImportError: No module named 'sklearn’

You say: "Just pip install sklearn"

ERROR: Could not find a version that satisfies the requirement sklearn

3 hours later: Still debugging Python versions, missing dependencies...

Sound familiar?

Why Reproducibility Matters

For you:

e 6 months later, you can still run your own code
e Switch laptops without days of setup

e Debug issues consistently

For collaboration:

 Teammates can run your code immediately
 No more "but it works for me!"

* Onboard new team members quickly

For science:

e Others can verify your results

e Build on your work 3

The Reproducibility Spectrum

Your code is only as good as its ability to run elsewhere. If no one else can run it, it might as well not exist.
Reproducibility isn't about being fancy - it's about being useful.

Reproducibility Spectrum

Not Reproducible Fully Reproducible
I I

v Y
[Just code] -» [+ README] - [+ requirements.txt] - [+ Docker] - [+ CI/CD]

i ! i) i
"What?" “"Maybe..." "Probably!" "Definitely” "Automated"

Today's goal: Get you to "Probably!" or better.

Connection to Our Netflix Project

Week 1-7: Built a movie success predictor
i
Week 8: Make it reproducible!
- Anyone can run your code
- Same results every time
- Works on any machine

Goal: Package our Netflix project so anyone can use it.

Part 1: Virtual Environments

Keeping projects separate

The Problem: Dependency Conflicts

Scenario:
Netflix Predictor 3.10 2.12 1.24
Old School Project 3.8 1.15 1.19
Your System 3.11 ?7? 7?7

Can't install both TensorFlow versions on the same system!

Solution: Give each project its own isolated environment.

Virtual Environments: The Concept

Think of it like separate rooms in a house:

Your Computer
— Project A's Room
| L— Python 3.10, TensorFlow 2.12, NumPy 1.24

— Project B's Room

| L— Python 3.8, TensorFlow 1.15, NumPy 1.19

L— Living Room (system Python)
L— Python 3.11 (don't touch this!)

Each room has its own stuff. No conflicts!

Creating a Virtual Environment

Step 1: Create the environment

python -m venv netflix env

Step 2: Activate it

source netflix env/bin/activate

netflix env\Scripts\activate

Step 3: Your prompt changes

(netflix env) $ python --version
Python 3.10.12

Now you're in the Netflix room!

Installing Packages in Your Environment

With the environment activated:

pip install pandas scikit-learn matplotlib

pip list

deactivate

Key insight: Packages only install in the active environment.

Your system Python stays clean!

10

requirements.txt: Your Shopping List

Save your dependencies:

pip freeze > requirements.txt

What it creates:

numpy==1.24.3
pandas==2.0.2
scikit-learn==1.2.2
matplotlib==3.7.1

Anyone can now install exactly what you have:

pip install -r requirements.txt

1

Good vs Bad requirements.txt

Good (pinned versions):

numpy==1.24.3
pandas==2.0.2
scikit-learn==1.2.2

Bad (unpinned):

numpy

pandas
scikit-learn

Why? Tomorrow, scikit-learn 2.0 releases with breaking changes. Your code breaks for new users, but not for you.

Pin your versions for reproducibility!

12

Conda: An Alternative

Conda is popular in data science. It can manage:

e Python versions (not just packages)

» Non-Python dependencies (CUDA, C libraries)

create -n netflix python=3.10

activate netflix

install pandas scikit-learn

env export > environment.yml

env create -f environment.yml

venv vs Conda: Which to Use?

Feature venv Conda

Built into Python Yes No (install separately)
Manage Python versions No Yes

Non-Python packages No Yes (CUDA, etc.)
Speed Fast Slower

File requirements.txt environment.ymi

Recommendation for this course: Start with venv (simpler).

Use Conda when you need GPU/CUDA setup.

14

Part 2: Random Seeds

Getting the same results every time

S

The Randomness Problem

Run your Netflix model training twice:

sklearn.model selection train test split
sklearn.ensemble RandomForestClassifier

X train, X test, y train, y test = train test split(X, vy)

model = RandomForestClassifier()
model.fit (X train, y train)
print(model.score(X test, y test))

Run 1: 0.82
Run 2: 0.79
Run 3: 0.84

Which result do you report?

16

What's Random in ML?

Many operations use random numbers:

1. Train/test split - which samples go where?
2. Model initialization - starting weights

3. Shuffling data - order during training

4. Dropout - which neurons to drop

5. Data augmentation - random transformations

Without control: Different results every run.

17

Setting Random Seeds

Simple fix: Tell Python what random numbers to use.

random

numpy np
sklearn.model selection train_test split

random.seed(42)
np.random.seed(42)

X train, X test, y train, y test = train test split(
X, y, random state=42

Run it 100 times - Same split every time!

A Complete Seed Function

random
numpy np

set seed(seed=42):

"""Set all random seeds for reproducibility."""
random.seed(seed)

np.random.seed(seed)

torch
torch.manual seed(seed)

torch.cuda.manual seed all(seed)
ImportError:

Why 427 It's a tradition (Hitchhiker's Guide to the Galaxy).

Any number works!

Don't Forget random_state!

Many sklearn functions have a random state parameter:

X train, X test, y train, y test = train test split(
X, y, test size=0.2, random state=42

model = RandomForestClassifier(
n_estimators=100, random state=42

cross val score(model, X, y, cv=5, random state=42)

Part 3: Docker Basics

"Works on my machine" - "Works on EVERY machine"

21

Virtual Environments Aren't Enough

Scenario: You share your requirements.txt, but...

Friend has different OS (Windows vs Mac vs Linux)

System libraries differ

CUDA versions conflict

Even PATH configurations vary

Virtual environments isolate Python, not the whole system.

22

Docker: Package Everything

Docker creates a container with:

Operating system

Python version

All libraries

Your code

Configuration

It's like shipping your entire laptop to someone!

Your Code + Python + Linux + Everything
!
Container

.
Runs identically everywhere

Docker Concepts

What lt Is Analogy

Image Blueprint/template Recipe

Container Running instance Cooked dish
Dockerfile Instructions to build image Recipe card

Registry Store for images Recipe book

Workflow:

Dockerfile - (build) - Image - (run) - Container

24

Your First Dockerfile

Create a file named Dockerfile (no extension):

python:3.10-slim

/app

requirements.txt .

pip install -r requirements.txt

Building and Running

Build the image:

docker build -t netflix-predictor .

Run it:

docker run netflix-predictor

That's it! Your code runs in an isolated container.

Works on any machine with Docker installed.

26

Common Docker Commands

docker build -t myapp .
docker run myapp

docker run -it myapp /bin/bash

run -v $(pwd)/data:/app/data myapp

When to Use Docker

Use Docker when:

Sharing with others on different OS

Deploying to cloud/servers

Complex dependencies (CUDA, system libraries)

Team projects

Skip Docker when:

* Personal projects on one machine
e Quick prototyping

e Simple pure-Python code

Start with venv + requirements.txt. Add Docker when needed.

28

Part 4: Project Structure

Organize for reproducibility

29

netflix-predictor/

— data/
| — raw/

| L— processed/
— models/

— notebooks/

— src/

| | data.py

| | train.py

| L— predict.py
— requirements.txt

— README.md

— .gitignore
L— config.yaml

A Reproducible Project Structure

Original, never modified
Cleaned data

Saved models

Jupyter notebooks

Source code

Data loading
Training script
Prediction script

Dependencies

Documentation
What to ignore in Git
Configuration

The README: Your Project's Front Door

Every project needs a good README:

Netflix Movie Predictor
Predicts movie success based on features.
Setup

Create virtual environment:

python -m venv venv

source venv/bin/activate

Install dependencies:
pip install -r requirements.txt

Download data:
python src/download

Configuration Files

Don't hardcode values in your code!

learning rate = 0.01
batch size = 32
model path = "/home/nipun/models/netflix.pkl"

Use a config file:

training:
learning rate: 0.01
batch size: 32
epochs: 100

paths:
model: models/netflix.pkl
data: data/processed/

Loading Config Files

yaml

load config(path="config.yaml"):
open(path) f:
yaml.safe load(f)

config = load config()
print(config["training"]["learning rate"])

Benefits:

e Change settings without modifying code
e Track configuration in Git

» Different configs for dev/prod

33

.gitignore: What NOT to Track

Data files (too large for Git)
data/raw/
*.CSV

Models (too large)
models/*.pkl
*.pth

Environment
venv/
__pycache /

Secrets
.env
secrets.yaml

Part 5: Putting It Together

Reproducibility checklist

B85

Reproducibility Checklist

Before sharing your project:

[] Virtual environment - venv or conda

[] requirements.txt - with pinned versions

[] Random seeds - set at script start

[] README - setup and usage instructions

[] Config file - no hardcoded values

[] .gitignore - exclude data/models

[] Test it - clone fresh and run

[] Docker (optional) - for complex setups

36

Quick Setup Script

Create setup.sh:

#!/bin/bash

python -m venv venv
source venv/bin/activate

pip install -r requirements.txt

python src/download data.py

echo "Setup complete! Run: source venv/bin/activate"

Now anyone can run: bash setup.sh

Netflix Project: Reproducibility

Let's apply this to our project:

netflix-predictor/

I— data/

| L— movies.csv
— src/

| }— train.py

| L— predict.py
— models/

| L— .gitkeep
— requirements.txt
— config.yaml
— README.md

— .gitignore

L— setup.sh

Now anyone can reproduce our movie predictor!

LCOAELCENWEVE

1. Virtual environments isolate project dependencies

o Use venv or conda

o Pin versions in requirements.txt
2. Random seeds ensure reproducible results

o Set at script start

o Use random_state parameter

3. Docker packages everything (when needed)
o OS + Python + libraries + code

4. Project structure matters
o README, config, .gitignore

o Separate code, data, models

39

Common Mistakes

Not pinning versions in requirements.txt

Forgetting random_state in train_test_split

Committing data/models to Git (use .gitignore!)

Hardcoding file paths ("/home/nipun/...")
No README (how do | run this?)

Testing only on your machine

The test: Can a friend run your code from scratch?

40

Lab Preview

This week's hands-on:

1. Create a virtual environment for your Netflix project
2. Generate requirements.txt with pinned versions

3. Add random seeds to your training script

4. Create a proper README

5. Write a Dockerfile (optional bonus)

6. Have a friend test your setup!

41

Interview Questions

Common interview questions on reproducibility:

1. "How would you ensure your ML experiments are reproducible?"

o Pin all dependency versions in requirements.txt

o Set random seeds (Python, NumPy, PyTorch/TensorFlow)
o Version control data with DVC or similar

o Use config files instead of hardcoded values

o Document environment (Python version, OS)
2. "What is Docker and why use it for ML?"

o Container packages code + dependencies + environment
o "Works on my machine" - "Works everywhere"
o Consistent dev/prod environments

o Easy deployment and scaling 42

Questions?

Today's key concepts:

Virtual environments (venv, conda)

requirements.txt

Random seeds

Docker basics

Project structure

Remember: Reproducibility is a gift to your future self!

43

