Building ML APIs with FastAPI

Week 10 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The Problem: Sharing Your Model

You've built an amazing movie predictor:

e Trained a model that predicts Netflix success

e Works great in your Jupyter notebook

But now:

» Your professor wants to try it
* A mobile app developer wants to use it

e The marketing team wants a dashboard

Challenge: They can't run your notebook!

The Solution: APIs

API = Application Programming Interface

Think of it like a restaurant:

* You (client) order food through a menu (API)
» Kitchen (server) prepares the food

* You don't need to know HOW the kitchen works

For ML:
Send movie features Get prediction back
{"budget" : 100, "genre S SEAC SRR {"success": true, "confidence": 0.85}

Why APIs Are Revolutionary

An APl is a universal translator. Everyone speaks HTTP. Everyone understands JSON.

Your model is in Python

Client could be a mobile app (Swift)

Dashboard uses JavaScript

Another service uses Go

Your ML model becomes accessible to the entire world.

The Universal Language

Python Model «-» API - Mobile App (Swift)

3

Web App (JavaScript)

Another Service (Go)

One model, infinite consumers.

HTTP: The Language of the Web

Every web request has:

GET Read data Get user profile
POST Send data Submit prediction
PUT Update data Update settings

DELETE Remove data Delete account

For ML predictions: We mostly use POST (send data, get prediction)

What is FastAPI?

FastAPI = Python framework for building APIs

Why FastAPI?

1. Fast: High performance (like Node.js)
2. Easy: Write Python, get web APIs
3. Auto-docs: Interactive documentation for free

4. Validation: Automatic input checking

pip install "fastapi[standard]"

Your First API: Hello World

Create app.py :

fastapi FastAPI
app = FastAPI()
@app.get(”/”)

hello():
{"message": "Hello, World!"}

Run it:

fastapi dev app.py

Visit: http://localhost:8000

http://localhost:8000/

Understanding the Code

fastapi FastAPI
app = FastAPI()
@app.get(”/”)

hello():
{"message": "Hello, World!"}

The @app.get("/") decorator:

e @app.get = Handle GET requests
o "/" = Atthe root URL (http://localhost:8000/)

http://localhost:8000/

Auto-Generated Documentation

Visit: http://localhost:8000/docs

You get Swagger Ul for free:

e See all your endpoints
e Test them interactively

» View request/response schemas

Try it: Click "Try it out" and execute!

10

http://localhost:8000/docs

Path Parameters

Dynamic URLs:

@app.get("/movies/{movie id}")

get movie(movie id: int):
{"movie id": movie id, "title": "Movie " + str(movie id)}

Examples:

e /movies/42 - {"movie id": 42, "title": "Movie 42"}

e /movies/123 - {"movie id": 123, "title": "Movie 123"}

Note: FastAPI automatically converts "42" to integer 42

1

Query Parameters

Optional parameters in URL:

@app.get("/movies")
search movies(genre: str = , limit: int

{

"genre": genre,
"Timit": limit,
"results": ["Movie 1", "Movie 2"]

Examples:

e /movies - Uses defaults
e /movies?genre=Action - Filter by genre

e /movies?genre=Comedy&limit=5 - Both parameters

12

POST Requests: Sending Data

For predictions, we need to send data:

pydantic BaseModel
MovieInput(BaseModel):
genre: str
budget: float

runtime: int

@app.post("/predict")
predict(movie: MovielInput):

{"success": "confidence": 0.85}

Client sends JSON:

{"genre": "Action", "budget": 150.0, "runtime": 120}

What is Pydantic?

Pydantic = Data validation library

pydantic BaseModel

MovieInput(BaseModel):

genre: str
budget: float
runtime: int

FastAPI uses Pydantic to:
1. Validate incoming data

2. Show schema in docs

3. Return clear error messages

14

Pydantic: Your API's Bouncer

Pydantic is like a bouncer at a club. No ID? Go away. Wrong type? Go away.

Validation happens BEFORE your code runs:
* No need to write if budget < 0: return error

e Pydantic does it automatically

* Your model only sees clean, validated data

S

Pydantic in Action

Raw Request JSON Pydantic Your Code
{"budget": "abc", ...} -

422 Error (never reaches your code)
{"budget": -10, ...} -

422 Error (never reaches your code)
{"budget": 100, ...} -» v Movielnput - predict(movie)

Trust your inputs. Pydantic already checked them.

16

Pydantic Field Validation

Add constraints:

pydantic BaseModel, Field

MovieInput(BaseModel):
genre: str
budget: float = Field(gt=0, 1t=500)
runtime: int = Field(ge=60, 1e=240)
is sequel: bool =

If budget is -10:

{"detail": "budget must be greater than 0"}

17

Serving Your ML Model

The pattern:

joblib
fastapi FastAPI

app = FastAPI()
model =

@app.on_event("startup")
load model():
model
model = joblib.load("movie model.pkl")
print("Model loaded!")

Why load at startup?

e Load once, use many times

* Don't reload for each request

Complete Prediction Endpoint

@app.post("/predict")
predict(movie: MovielInput):

features = [
movie.budget,
movie.runtime,
1 movie.is sequel

prediction = model.predict([features])[0]

probability = model.predict proba([features])[0]

{

"prediction": "Success" prediction ==
"confidence": float(max(probability))

Complete Example: Movie Predictor API

fastapi FastAPI, HTTPException
pydantic BaseModel, Field
joblib

app = FastAPI(title="Movie Success Predictor")
model =

MovieInput(BaseModel):
budget: float = Field(gt=0, description="Budget in millions")
runtime: int = Field(ge=60, le=240, description="Runtime in minutes")
is sequel: bool =

PredictionOutput(BaseModel):
prediction: str
confidence: float

Complete Example (continued)

@app.get("/health")
health check():
{
"status": "healthy",
"model loaded": model

@app.post("/predict", response model=PredictionOutput)
predict(movie: MovielInput):
model :
HTTPException(status code=503, detail="Model not loaded")

features = [[movie.budget, movie.runtime, int(movie.is sequel)]]
prediction = model.predict(features)[0]
probability = model.predict proba(features)[0]

Error Handling

What if something goes wrong?

fastapi HTTPException

@app.post("/predict")
predict(movie: Movielnput):
model :
HTTPException(
status code=503,
detail="Model not available"

result = model.predict(...)
{"prediction": result}
Exception e:
HTTPException(
status code=500,

HTTP Status Codes

Ccose weonns L wnniouse

200 OK Request succeeded
400 Bad Request Invalid input
404 Not Found Resource doesn't exist

422 Validation Error = Pydantic validation failed
500 Server Error Something crashed

503 Unavailable Model not loaded

23

Status Codes: The Body Language of APIs

Status codes tell you instantly if a request worked or failed.

Learn the families:
o 2XxXx = Success

e 4Axx = Your fault (bad request)

e 5xx = Server's fault

Client: "budget=-50" - Server: 422 (your fault!)

Client: "budget=100" - Server: 500 (our fault!)
Client: "budget=100" - Server: 200 (success!)

24

Health Check Endpoint

Always add a health check:

@app.get("/health")
health check():
{

"status": "healthy",
"model loaded": model
"version": "1.0.0"

Why?

* Kubernetes/Docker checks if app is running
* Load balancers know where to send traffic

e Monitoring tools track uptime

25

The Heartbeat Analogy

A health check is your API's pulse. No response = something is wrong.

In production:

e Load balancers ping /health every 30 seconds
* No response? Restart service or redirect traffic

e Without this, your APl could be dead and nobody knows

26

Health Check Flow

Load Balancer pings /health:

EEEE—— /health? —
Load - | API 1 | v~ 200 OK

/health? —_—
— | API 2 | x No response!
L L

| |
| Balancer | O —
| |
| |

| (removed)
L—. Only sends traffic to API 1

27

Testing Your API

Use FastAPI's TestClient:

fastapi.testclient TestClient
app app

client = TestClient(app)
test health():

response = client.get("/health")
response.status code == 200

response.json()["status"] == "healthy"

test predict():
response = client.post("/predict", json={
"budget": 100, "runtime": 120, "is sequel":
})
response.status code == 200
"prediction” response.json()

Running Tests

Install pytest:

pip install pytest

Create test_app.py with your tests

Run:

pytest test app.py -V

Output:

test app.py::test health PASSED

test app.py::test predict PASSED

29

Running in Production

Development server (for testing):

fastapi dev app.py

Production server:

uvicorn app:app --host 0.0.0.0 --port 8000

With multiple workers:

uvicorn app:app --host 0.0.0.0 --port 8000 --workers 4

30

Docker Deployment

Create Dockerfile :

python:3.10-slim

/app

requirements.txt .
pip install -r requirements.txt

["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]

Build and run:

docker build -t movie-api .
docker run -p 8000:8000 movie-api

Calling Your API from Python

Using requests library:

requests

response = requests.post(
"http://localhost:8000/predict",
json={
"budget": 100,
"runtime": 120,
"is sequel":

print(response.json())

Calling Your API from JavaScript

fetch("http://localhost:8000/predict", {
method: "POST",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({
budget: 100,
runtime: 120,
is sequel:

})
})

.then(response => response.json())
.then(data => console.log(data));

CORS: Allowing Web Apps to Call Your API

Problem: Browsers block requests to different domains

Solution: Enable CORS

fastapi.middleware.cors CORSMiddleware

app.add middleware(
CORSMiddleware,

allow origins=["*"
allow methods=["*"
allow headers=["*"

34

API Best Practices

1. Always validate inputs

budget: float = Field(gt=0, 1t=500)

2. Return consistent responses

{"prediction": "confidence": ...

3. Add health checks

@app.get("/health")

4. Handle errors gracefully

Exception e:

HTTPException(500, detail=str(e))

5. Document your API (FastAPI does this automatically!)

Summary

FastAPI Python framework for APIs
Pydantic Data validation

GET Read data

POST Send data (predictions)

HTTPException Handle errors
/health Check if APl is running

TestClient Test your API

36

Lab Preview

This week you'll:

1. Create a FastAPI app from scratch

2. Add input validation with Pydantic

3. Serve your Netflix movie predictor model
4. Add error handling and health checks

5. Write tests for your API

6. Deploy with Docker (optional)

Result: A working ML API you can share with anyone!

£/

Interview Questions

Common interview questions on HTTP APIs:

1. "What HTTP status code would you return for invalid input?"

o 400 Bad Request for malformed/invalid data
o 422 Unprocessable Entity for validation failures (FastAPI default)

o 401/403 for auth issues, 404 for not found, 500 for server errors
2. "How would you design an API for ML predictions?"

o POST endpoint (sending data for processing)

O

Validate input with Pydantic models

(@)

Return prediction + confidence + metadata

(@)

Add health check endpoint for monitoring

o

Handle errors gracefully with informative messages

38

Questions?

Key takeaways:

FastAPl makes building ML APIs easy

Pydantic validates your inputs automatically

Always add health checks and error handling

Test your API before deployment

Next week: Git and CI/CD

39

