
1

Building ML APIs with FastAPIBuilding ML APIs with FastAPI
Week 10 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The Problem: Sharing Your ModelThe Problem: Sharing Your Model

You've built an amazing movie predictor:

Trained a model that predicts Netflix success

Works great in your Jupyter notebook

But now:

Your professor wants to try it

A mobile app developer wants to use it

The marketing team wants a dashboard

Challenge: They can't run your notebook!

2

The Solution: APIsThe Solution: APIs

API = Application Programming Interface

Think of it like a restaurant:

You (client) order food through a menu (API)

Kitchen (server) prepares the food

You don't need to know HOW the kitchen works

For ML:

Request Response

Send movie features Get prediction back

{"budget": 100, "genre": "Action"} {"success": true, "confidence": 0.85}

3

Why APIs Are RevolutionaryWhy APIs Are Revolutionary

An API is a universal translator. Everyone speaks HTTP. Everyone understands JSON.

Your model is in Python

Client could be a mobile app (Swift)

Dashboard uses JavaScript

Another service uses Go

Your ML model becomes accessible to the entire world.

4

The Universal LanguageThe Universal Language

Python Model ←→ API ←→ Mobile App (Swift)

 Web App (JavaScript)

 Another Service (Go)

One model, infinite consumers.

5

HTTP: The Language of the WebHTTP: The Language of the Web

Every web request has:

Method Purpose Example

GET Read data Get user profile

POST Send data Submit prediction

PUT Update data Update settings

DELETE Remove data Delete account

For ML predictions: We mostly use POST (send data, get prediction)

6

What is FastAPI?What is FastAPI?

FastAPI = Python framework for building APIs

Why FastAPI?

1. Fast: High performance (like Node.js)

2. Easy: Write Python, get web APIs

3. Auto-docs: Interactive documentation for free

4. Validation: Automatic input checking

pip install "fastapi[standard]"

7

Your First API: Hello WorldYour First API: Hello World

Create app.py :

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

def hello():

 return {"message": "Hello, World!"}

Run it:

fastapi dev app.py

Visit: http://localhost:8000

8

http://localhost:8000/

Understanding the CodeUnderstanding the Code

from fastapi import FastAPI

app = FastAPI() # Create the app

@app.get("/") # When someone visits "/"

def hello(): # Run this function

 return {"message": "Hello, World!"} # Return JSON

The @app.get("/") decorator:

@app.get = Handle GET requests

"/" = At the root URL (http://localhost:8000/)

9

http://localhost:8000/

Auto-Generated DocumentationAuto-Generated Documentation

Visit: http://localhost:8000/docs

You get Swagger UI for free:

See all your endpoints

Test them interactively

View request/response schemas

Try it: Click "Try it out" and execute!

10

http://localhost:8000/docs

Path ParametersPath Parameters

Dynamic URLs:

@app.get("/movies/{movie_id}")

def get_movie(movie_id: int):

 return {"movie_id": movie_id, "title": "Movie " + str(movie_id)}

Examples:

/movies/42 → {"movie_id": 42, "title": "Movie 42"}

/movies/123 → {"movie_id": 123, "title": "Movie 123"}

Note: FastAPI automatically converts "42" to integer 42

11

Query ParametersQuery Parameters

Optional parameters in URL:

@app.get("/movies")

def search_movies(genre: str = None, limit: int = 10):

 return {

 "genre": genre,

 "limit": limit,

 "results": ["Movie 1", "Movie 2"]

 }

Examples:

/movies → Uses defaults

/movies?genre=Action → Filter by genre

/movies?genre=Comedy&limit=5 → Both parameters

12

POST Requests: Sending DataPOST Requests: Sending Data

For predictions, we need to send data:

from pydantic import BaseModel

class MovieInput(BaseModel):

 genre: str

 budget: float

 runtime: int

@app.post("/predict")

def predict(movie: MovieInput):

 # Prediction logic here

 return {"success": True, "confidence": 0.85}

Client sends JSON:

{"genre": "Action", "budget": 150.0, "runtime": 120}

13

What is Pydantic?What is Pydantic?

Pydantic = Data validation library

from pydantic import BaseModel

class MovieInput(BaseModel):

 genre: str # Must be a string

 budget: float # Must be a number

 runtime: int # Must be an integer

FastAPI uses Pydantic to:

1. Validate incoming data

2. Show schema in docs

3. Return clear error messages

14

Pydantic: Your API's BouncerPydantic: Your API's Bouncer

Pydantic is like a bouncer at a club. No ID? Go away. Wrong type? Go away.

Validation happens BEFORE your code runs:

No need to write if budget < 0: return error

Pydantic does it automatically

Your model only sees clean, validated data

15

Pydantic in ActionPydantic in Action

Raw Request JSON Pydantic Your Code

{"budget": "abc", ...} ──────→

 422 Error (never reaches your code)

{"budget": -10, ...} ──────→

 422 Error (never reaches your code)

{"budget": 100, ...} ──────→ ✓ MovieInput → predict(movie)

Trust your inputs. Pydantic already checked them.

16

Pydantic Field ValidationPydantic Field Validation

Add constraints:

from pydantic import BaseModel, Field

class MovieInput(BaseModel):

 genre: str

 budget: float = Field(gt=0, lt=500) # Between 0-500

 runtime: int = Field(ge=60, le=240) # 60-240 minutes

 is_sequel: bool = False # Optional with default

If budget is -10:

{"detail": "budget must be greater than 0"}

17

Serving Your ML ModelServing Your ML Model

The pattern:

import joblib

from fastapi import FastAPI

app = FastAPI()

model = None # Global variable

@app.on_event("startup")

def load_model():

 global model

 model = joblib.load("movie_model.pkl")

 print("Model loaded!")

Why load at startup?

Load once, use many times

Don't reload for each request
18

Complete Prediction EndpointComplete Prediction Endpoint

@app.post("/predict")

def predict(movie: MovieInput):

 # Prepare features

 features = [

 movie.budget,

 movie.runtime,

 1 if movie.is_sequel else 0

]

 # Make prediction

 prediction = model.predict([features])[0]

 probability = model.predict_proba([features])[0]

 return {

 "prediction": "Success" if prediction == 1 else "Risky",

 "confidence": float(max(probability))

19

Complete Example: Movie Predictor APIComplete Example: Movie Predictor API

from fastapi import FastAPI, HTTPException

from pydantic import BaseModel, Field

import joblib

app = FastAPI(title="Movie Success Predictor")

model = None

class MovieInput(BaseModel):

 budget: float = Field(gt=0, description="Budget in millions")

 runtime: int = Field(ge=60, le=240, description="Runtime in minutes")

 is_sequel: bool = False

class PredictionOutput(BaseModel):

 prediction: str

 confidence: float

20

Complete Example (continued)Complete Example (continued)

@app.get("/health")

def health_check():

 return {

 "status": "healthy",

 "model_loaded": model is not None

 }

@app.post("/predict", response_model=PredictionOutput)

def predict(movie: MovieInput):

 if model is None:

 raise HTTPException(status_code=503, detail="Model not loaded")

 features = [[movie.budget, movie.runtime, int(movie.is_sequel)]]

 prediction = model.predict(features)[0]

 probability = model.predict_proba(features)[0]

21

Error HandlingError Handling

What if something goes wrong?

from fastapi import HTTPException

@app.post("/predict")

def predict(movie: MovieInput):

 if model is None:

 raise HTTPException(

 status_code=503,

 detail="Model not available"

)

 try:

 result = model.predict(...)

 return {"prediction": result}

 except Exception as e:

 raise HTTPException(

 status_code=500,

22

HTTP Status CodesHTTP Status Codes

Code Meaning When to use

200 OK Request succeeded

400 Bad Request Invalid input

404 Not Found Resource doesn't exist

422 Validation Error Pydantic validation failed

500 Server Error Something crashed

503 Unavailable Model not loaded

23

Status Codes: The Body Language of APIsStatus Codes: The Body Language of APIs

Status codes tell you instantly if a request worked or failed.

Learn the families:

2xx = Success

4xx = Your fault (bad request)

5xx = Server's fault

Client: "budget=-50" → Server: 422 (your fault!)

Client: "budget=100" → Server: 500 (our fault!)

Client: "budget=100" → Server: 200 (success!)

24

Health Check EndpointHealth Check Endpoint

Always add a health check:

@app.get("/health")

def health_check():

 return {

 "status": "healthy",

 "model_loaded": model is not None,

 "version": "1.0.0"

 }

Why?

Kubernetes/Docker checks if app is running

Load balancers know where to send traffic

Monitoring tools track uptime

25

The Heartbeat AnalogyThe Heartbeat Analogy

A health check is your API's pulse. No response = something is wrong.

In production:

Load balancers ping /health every 30 seconds

No response? Restart service or redirect traffic

Without this, your API could be dead and nobody knows

26

Health Check FlowHealth Check Flow

Load Balancer pings /health:

 ┌────────────┐ /health? ┌────────────┐

 │ Load │ ───────────────→ │ API 1 │ ✓ 200 OK

 │ Balancer │ └────────────┘

 │ │ /health? ┌────────────┐

 │ │ ───────────────→ │ API 2 │ ✗ No response!

 └────────────┘ └────────────┘

 │ (removed)

 └──→ Only sends traffic to API 1

27

Testing Your APITesting Your API

Use FastAPI's TestClient:

from fastapi.testclient import TestClient

from app import app

client = TestClient(app)

def test_health():

 response = client.get("/health")

 assert response.status_code == 200

 assert response.json()["status"] == "healthy"

def test_predict():

 response = client.post("/predict", json={

 "budget": 100, "runtime": 120, "is_sequel": False

 })

 assert response.status_code == 200

 assert "prediction" in response.json()

28

Running TestsRunning Tests

Install pytest:

pip install pytest

Create test_app.py with your tests

Run:

pytest test_app.py -v

Output:

test_app.py::test_health PASSED

test_app.py::test_predict PASSED

29

Running in ProductionRunning in Production

Development server (for testing):

fastapi dev app.py # Auto-reload on changes

Production server:

uvicorn app:app --host 0.0.0.0 --port 8000

With multiple workers:

uvicorn app:app --host 0.0.0.0 --port 8000 --workers 4

30

Docker DeploymentDocker Deployment

Create Dockerfile :

FROM python:3.10-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY . .

CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]

Build and run:

docker build -t movie-api .

docker run -p 8000:8000 movie-api

31

Calling Your API from PythonCalling Your API from Python

Using requests library:

import requests

Make prediction

response = requests.post(

 "http://localhost:8000/predict",

 json={

 "budget": 100,

 "runtime": 120,

 "is_sequel": False

 }

)

print(response.json())

{"prediction": "Success", "confidence": 0.85}

32

Calling Your API from JavaScriptCalling Your API from JavaScript

// In a web app

fetch("http://localhost:8000/predict", {

 method: "POST",

 headers: {"Content-Type": "application/json"},

 body: JSON.stringify({

 budget: 100,

 runtime: 120,

 is_sequel: false

 })

})

.then(response => response.json())

.then(data => console.log(data));

33

CORS: Allowing Web Apps to Call Your APICORS: Allowing Web Apps to Call Your API

Problem: Browsers block requests to different domains

Solution: Enable CORS

from fastapi.middleware.cors import CORSMiddleware

app.add_middleware(

 CORSMiddleware,

 allow_origins=["*"], # Allow all (use specific domains in production)

 allow_methods=["*"],

 allow_headers=["*"],

)

34

API Best PracticesAPI Best Practices

1. Always validate inputs

budget: float = Field(gt=0, lt=500)

2. Return consistent responses

{"prediction": ..., "confidence": ...}

3. Add health checks

@app.get("/health")

4. Handle errors gracefully

except Exception as e:

 raise HTTPException(500, detail=str(e))

5. Document your API (FastAPI does this automatically!)
35

SummarySummary

Concept What it does

FastAPI Python framework for APIs

Pydantic Data validation

GET Read data

POST Send data (predictions)

HTTPException Handle errors

/health Check if API is running

TestClient Test your API

36

Lab PreviewLab Preview

This week you'll:

1. Create a FastAPI app from scratch

2. Add input validation with Pydantic

3. Serve your Netflix movie predictor model

4. Add error handling and health checks

5. Write tests for your API

6. Deploy with Docker (optional)

Result: A working ML API you can share with anyone!

37

Interview QuestionsInterview Questions

Common interview questions on HTTP APIs:

1. "What HTTP status code would you return for invalid input?"

400 Bad Request for malformed/invalid data

422 Unprocessable Entity for validation failures (FastAPI default)

401/403 for auth issues, 404 for not found, 500 for server errors

2. "How would you design an API for ML predictions?"

POST endpoint (sending data for processing)

Validate input with Pydantic models

Return prediction + confidence + metadata

Add health check endpoint for monitoring

Handle errors gracefully with informative messages

38

Questions?Questions?

Key takeaways:

FastAPI makes building ML APIs easy

Pydantic validates your inputs automatically

Always add health checks and error handling

Test your API before deployment

Next week: Git and CI/CD

39

