Edge Deployment & Model Optimization

Week 12 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The Problem: Models Are Too Big

Your trained model:

* ResNet-50: 100 MB
e BERT: 440 MB
e GPT-2:15GB

Target devices:

e Smartphone: Limited memory, battery
* Raspberry Pi: 2-4 GB RAM

e Web browser: Size limits

Challenge: How do we run models on constrained devices?

Edge vs Cloud Deployment

et ot e

Compute Unlimited Limited

Latency Network + Processing Processing only
Privacy Data leaves device Data stays local
Cost Per-request pricing One-time hardware
Connectivity = Requires internet Works offline

Edge examples: Phone apps, loT sensors, in-car systems

Why Deploy on Edge?

1. Speed

* No network latency

e Real-time predictions

2. Privacy

e Data never leaves the device

o GDPR/HIPAA compliance

3. Reliability

 Works without internet

e No server downtime issues

4. Cost

The Speed of Light Problem

Physics limits cloud Al. Light travels 300km per millisecond. No algorithm can reduce this.

Cloud AI: You - Network (50ms) - Server - Network (50ms) - Response
Total: 100+ ms

Edge AI: You - Local Device - Response
Total: 10 ms

Self-driving car at 60mph: 100ms = 2.7 meters (too late!), 10ms = 0.27 meters (can react)

Model Optimization Techniques

Quantization 4x smaller 2-4x faster <1%
Pruning 2x smaller 1.5-2x faster 1-2%
Distillation Varies Varies Can match original

The good news: You can often get 4x smaller AND faster with minimal accuracy loss!

Quantization: The Big Idea

Normal models use 32-bit floats:

e Each weight: 32 bits

e High precision, but large

Quantized models use 8-bit integers:

e Each weight: 8 bits

e 4x smaller, faster on CPUs

Float32: 32 bits per weight

Int8: 8 bits per weight - 4x compression!

The Precision Intuition

Do you really need 9 decimal places? 0.234567891 vs 0.23 - barely matters for neural networks.

Quantization exploits this: trade precision you don't need for speed and size you do need.

Precision Example Value Use Case

Float32 (full) 0.234567891... Training
Float16 0.2346 GPU inference
Int8 60/255=0.24 Edge deployment

The key insight: Neural networks are surprisingly robust to reduced precision.

Quantization Example

Before (Float32):

weights = [0.234, -0.567, 0.891, ...
model size = 100 MB

After (Int8):

weights = [45, -127, 95, ...

model size = 25 MB

The math:

e Find min/max of weights
e Scale to 0-255 range

e Store as integers

Types of Quantization

1. Post-Training Quantization (PTQ)

e Train model normally (Float32)
e Convert to Int8 after training

* Quick and easy

2. Quantization-Aware Training (QAT)

e Simulate quantization during training
* Model learns to handle lower precision

e Better accuracy, more effort

For most cases: PTQ is good enough!

10

Quantization in PyTorch

Dynamic quantization (easiest):

model = MyModel()
model. load state dict(torch.load("model.pth"))
model.eval()

quantized model = torch.quantization.quantize dynamic(
model,
{torch.nn.Linear},
dtype=torch.qint8

torch.save(quantized model.state dict(), "model quantized.pth")

Checking Model Size

0s

get model size(path):

"""Get model size in MB."""

size = os.path.getsize(path) / (1024 * 1024)
f"{size:.1f} MB"

print(f"Original: {get model size('model.pth')}")
print(f"Quantized: {get model size('model quantized.pth')}")

Pruning: Remove Useless Weights

Observation: Many weights in neural networks are close to zero.

Idea: Remove them!

Before pruning: [0.9, 0.01, -0.8, 0.001, 0.7]

After 40% pruning: [0.9, 0, -0.8, 0, 0.7]

Benefits:

e Smaller model

» Faster inference (fewer multiplications)

13

Pruning in PyTorch

torch.nn.utils.prune prune

prune.ll unstructured(
model. fcl,
name='weight',
amount=0.3

remove (model.fcl, 'weight')

zeros (model.fcl.weight == 0).sum()
total = model.fcl.weight.numel()
print(f"Sparsity: {zeros/total:.1%}")

Knowledge Distillation

Idea: Train a small "student" model to mimic a large "teacher" model.

Teacher (Large): 100 MB, 95% accuracy

1 Knowledge Transfer
Student (Small): 10 MB, 93% accuracy

Why it works:

e Student learns from teacher's "soft" outputs
e More information than hard labels

e Can get near-teacher accuracy with smaller model

S

The Teacher's Soft Knowledge

Hard labels throw away information. "cat" tells you nothing about cat-like vs dog-like.

Hard Label Soft Label (Teacher)
Image of fluffy cat: "cat" cat:0.90, dog:0.08, fox:0.02

7 1
No nuance! "Looks a bit dog-like too"

Student learns relationships: cats and dogs are similar, cats and airplanes aren't.

16

Distillation: Simple Example

torch.nn.functional

distillation loss(student logits, teacher logits, labels, T=3, alpha=0.5):

hard loss = F.cross entropy(student logits, labels)

soft student F.log softmax(student logits / T, dim=1)
soft teacher = F.softmax(teacher logits / T, dim=1)
soft loss = F.kl div(soft student, soft teacher)

alpha * hard loss + (1 - alpha) * soft loss * T * T

ONNX: Universal Model Format

Problem: You trained in PyTorch, but want to deploy on mobile/web.

Solution: ONNX (Open Neural Network Exchange)

e Standard format for neural networks
e Export from PyTorch, TensorFlow, etc.

* Run on any platform

PyTorch Model - ONNX - ONNX Runtime - Any Device

18

Exporting to ONNX

model = MyModel()
model.load state dict(torch.load("model.pth"))
model.eval ()

dummy input = torch.randn(1l, 3, 224, 224)

torch.onnx.export(
model,
dummy input,

"model.onnx",
input names=['image'],

Running with ONNX Runtime

onnxruntime ort
numpy np

session = ort.InferenceSession("model.onnx")

input data = np.random.randn(1l, 3, 224, 224).astype(np.float32)

outputs = session.run(

’

{'image': 1nput data}

print(f"Prediction: {outputs[0]}")

Benefits: 2-3x faster than PyTorch on CPU!

ONNX Optimizations

ONNX Runtime automatically applies:

1. Operator fusion: Combine Conv + BatchNorm + ReLU into one
2. Constant folding: Pre-compute constants

3. Memory optimization: Reuse buffers

Before: Conv - BatchNorm - ReLU (3 operations)

After: ConvBNRelLU (1 operation)

21

TensorFlow Lite (TFLite)

For mobile deployment (Android/iOS):

tensorflow tf

converter = tf.lite.TFLiteConverter.from saved model('model")
converter.optimizations = [tf.lite.Optimize.DEFAULT]

tflite model = converter.convert()

open('model.tflite', 'wb')
f.write(tflite model)

TFLite is optimized for:

 ARM processors (phones)
e Edge TPU accelerators

e Microcontrollers 29

Choosing the Right Approach

Quick optimization
Maximum compression
Best accuracy

Mobile app
Cross-platform

Web browser

Quantization (PTQ)
Quantization + Pruning
Knowledge distillation
TensorFlow Lite

ONNX Runtime

ONNX + WebAssembly

Start with quantization - it's the easiest and most effective!

23

Benchmarking Your Model

time
numpy np

benchmark(model, input data, n runs=100):
"""Measure average inference time."""

range(10):
model (input data)

times []

range(n_runs):
start = time.perf counter()
= model(input data)
times.append(time.perf counter() - start)

Before vs After Optimization

e ol opimes

Size 100MB 25 MB

Latency 50 ms 12 ms
Memory 400 MB 100 MB
Accuracy 95.0% 94.5%

Trade-off: 0.5% accuracy for 4x smaller and 4x faster!

25

Deployment Pipeline

Train Model (Float32)
i

Prune (optional)
i

Quantize (Int8)
i

Export (ONNX/TFLite)
i

Benchmark on target device
i

Deploy

Common Deployment Targets

1. Mobile Apps

* Use TensorFlow Lite or Core ML (iOS)
e Optimize for ARM processors

e Consider battery usage

2. Web Browser

e Use ONNX.js or TensorFlow.js
* Models must be small (< 10 MB)

» Use WebGL for acceleration

3. Embedded/loT

e Use TensorFlow Lite Micro

e Very limited memory (KB, not MB) 27

Real-World Example: Mobile App

Original model: ResNet-50

e Size: 98 MB
e Latency: 200 ms

Optimization steps:

1. Replace with MobileNet-v2 (smaller architecture)

2. Quantize to Int8
3. Export to TFLite

Optimized model:

e Size: 3.4 MB

e Latency: 30 ms
28

e Accuracy: 71% (vs 76% for ResNet)

Efficient Model Architectures

Designed for mobile/edge:

MobileNet-v2 3.4MB 71.8% 30 ms
EfficientNet-BO 5.3 MB 77.1% 45 ms
SqueezeNet 1.2MB 57.5% 25 ms

vs. Desktop models:
| ResNet-50 | 98 MB | 76.1% | 200 ms |
| VGG-16 | 528 MB | 71.5% | 400 ms |

29

Tips for Edge Deployment

1. Start with a smaller model

* MobileNet instead of ResNet
e DistilBERT instead of BERT

2. Always quantize

e Easy 4x size reduction

e Often 2-4x speed improvement

3. Profile on target device

» Desktop performance # Mobile performance

e Test on actual hardware

4. Consider accuracy trade-offs
30

Summary

Quantization 32-bit - 8-bit

Pruning Remove small weights
Distillation Train smaller model
ONNX Cross-platform format
TFLite Mobile format

Always (first step)

Need more compression
Can afford retraining
Non-Python deployment
Android/iOS apps

31

Lab Preview

This week you'll:

1. Benchmark your model's size and speed

2. Apply quantization and measure improvement
3. Try pruning and compare results

4. Export to ONNX format

5. Run with ONNX Runtime

6. Compare all approaches

Result: An optimized model ready for edge deployment!

32

Interview Questions

Common interview questions on edge deployment:

1. "How would you deploy an ML model to a mobile device?"

o Quantize: Reduce precision (FP32 - INT8) for 4x smaller size
o Export to TFLite (Android/iOS) or Core ML (iOS)
o Consider smaller architectures (MobileNet, DistilBERT)

o Benchmark on actual device (not emulator)
2. "What is quantization and what are its trade-offs?"

o Converting weights from 32-bit floats to 8-bit integers
o Benefits: 4x smaller model, 2-4x faster inference
o Trade-off: 1-2% accuracy loss (usually acceptable)

o Types: post-training (easy) vs quantization-aware training (better)

33

Questions?

Key takeaways:

Quantization is the easiest win (4x smaller, 2-4x faster)

ONNX enables cross-platform deployment

Start with efficient architectures when possible

Always benchmark on target hardware

Next week: Profiling & Performance

34

