
1

Edge Deployment & Model OptimizationEdge Deployment & Model Optimization
Week 12 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The Problem: Models Are Too BigThe Problem: Models Are Too Big

Your trained model:

ResNet-50: 100 MB

BERT: 440 MB

GPT-2: 1.5 GB

Target devices:

Smartphone: Limited memory, battery

Raspberry Pi: 2-4 GB RAM

Web browser: Size limits

Challenge: How do we run models on constrained devices?

2

Edge vs Cloud DeploymentEdge vs Cloud Deployment

Aspect Cloud Edge

Compute Unlimited Limited

Latency Network + Processing Processing only

Privacy Data leaves device Data stays local

Cost Per-request pricing One-time hardware

Connectivity Requires internet Works offline

Edge examples: Phone apps, IoT sensors, in-car systems

3

Why Deploy on Edge?Why Deploy on Edge?

1. Speed

No network latency

Real-time predictions

2. Privacy

Data never leaves the device

GDPR/HIPAA compliance

3. Reliability

Works without internet

No server downtime issues

4. Cost

N l d t t

4

The Speed of Light ProblemThe Speed of Light Problem

Physics limits cloud AI. Light travels 300km per millisecond. No algorithm can reduce this.

Cloud AI: You → Network (50ms) → Server → Network (50ms) → Response

 Total: 100+ ms

Edge AI: You → Local Device → Response

 Total: 10 ms

Self-driving car at 60mph: 100ms = 2.7 meters (too late!), 10ms = 0.27 meters (can react)

5

Model Optimization TechniquesModel Optimization Techniques

Technique Size Reduction Speed Up Accuracy Loss

Quantization 4x smaller 2-4x faster < 1%

Pruning 2x smaller 1.5-2x faster 1-2%

Distillation Varies Varies Can match original

The good news: You can often get 4x smaller AND faster with minimal accuracy loss!

6

Quantization: The Big IdeaQuantization: The Big Idea

Normal models use 32-bit floats:

Each weight: 32 bits

High precision, but large

Quantized models use 8-bit integers:

Each weight: 8 bits

4x smaller, faster on CPUs

Float32: 32 bits per weight

Int8: 8 bits per weight → 4x compression!

7

The Precision IntuitionThe Precision Intuition

Do you really need 9 decimal places? 0.234567891 vs 0.23 - barely matters for neural networks.

Quantization exploits this: trade precision you don't need for speed and size you do need.

Precision Example Value Use Case

Float32 (full) 0.234567891... Training

Float16 0.2346 GPU inference

Int8 60/255 ≈ 0.24 Edge deployment

The key insight: Neural networks are surprisingly robust to reduced precision.

8

Quantization ExampleQuantization Example

Before (Float32):

weights = [0.234, -0.567, 0.891, ...] # 32 bits each

model_size = 100 MB

After (Int8):

weights = [45, -127, 95, ...] # 8 bits each

model_size = 25 MB # 4x smaller!

The math:

Find min/max of weights

Scale to 0-255 range

Store as integers

9

Types of QuantizationTypes of Quantization

1. Post-Training Quantization (PTQ)

Train model normally (Float32)

Convert to Int8 after training

Quick and easy

2. Quantization-Aware Training (QAT)

Simulate quantization during training

Model learns to handle lower precision

Better accuracy, more effort

For most cases: PTQ is good enough!

10

Quantization in PyTorchQuantization in PyTorch

Dynamic quantization (easiest):

import torch

Original model

model = MyModel()

model.load_state_dict(torch.load("model.pth"))

model.eval()

Quantize

quantized_model = torch.quantization.quantize_dynamic(

 model,

 {torch.nn.Linear}, # Layers to quantize

 dtype=torch.qint8

)

Save

torch.save(quantized_model.state_dict(), "model_quantized.pth")

11

Checking Model SizeChecking Model Size

import os

def get_model_size(path):

 """Get model size in MB."""

 size = os.path.getsize(path) / (1024 * 1024)

 return f"{size:.1f} MB"

print(f"Original: {get_model_size('model.pth')}")

print(f"Quantized: {get_model_size('model_quantized.pth')}")

Output:

Original: 100.0 MB

Quantized: 25.2 MB

12

Pruning: Remove Useless WeightsPruning: Remove Useless Weights

Observation: Many weights in neural networks are close to zero.

Idea: Remove them!

Before pruning: [0.9, 0.01, -0.8, 0.001, 0.7]

After 40% pruning: [0.9, 0, -0.8, 0, 0.7]

Benefits:

Smaller model

Faster inference (fewer multiplications)

13

Pruning in PyTorchPruning in PyTorch

import torch.nn.utils.prune as prune

Prune 30% of weights (smallest magnitudes)

prune.l1_unstructured(

 model.fc1, # Layer to prune

 name='weight',

 amount=0.3 # Remove 30%

)

Make pruning permanent

prune.remove(model.fc1, 'weight')

Check sparsity

zeros = (model.fc1.weight == 0).sum()

total = model.fc1.weight.numel()

print(f"Sparsity: {zeros/total:.1%}")

14

Knowledge DistillationKnowledge Distillation

Idea: Train a small "student" model to mimic a large "teacher" model.

Teacher (Large): 100 MB, 95% accuracy

 ↓ Knowledge Transfer

Student (Small): 10 MB, 93% accuracy

Why it works:

Student learns from teacher's "soft" outputs

More information than hard labels

Can get near-teacher accuracy with smaller model

15

The Teacher's Soft KnowledgeThe Teacher's Soft Knowledge

Hard labels throw away information. "cat" tells you nothing about cat-like vs dog-like.

 Hard Label Soft Label (Teacher)

Image of fluffy cat: "cat" cat:0.90, dog:0.08, fox:0.02

 ↑ ↑

 No nuance! "Looks a bit dog-like too"

Student learns relationships: cats and dogs are similar, cats and airplanes aren't.

16

Distillation: Simple ExampleDistillation: Simple Example

import torch.nn.functional as F

def distillation_loss(student_logits, teacher_logits, labels, T=3, alpha=0.5):

 # Hard loss: student vs true labels

 hard_loss = F.cross_entropy(student_logits, labels)

 # Soft loss: student vs teacher (with temperature)

 soft_student = F.log_softmax(student_logits / T, dim=1)

 soft_teacher = F.softmax(teacher_logits / T, dim=1)

 soft_loss = F.kl_div(soft_student, soft_teacher)

 # Combine

 return alpha * hard_loss + (1 - alpha) * soft_loss * T * T

17

ONNX: Universal Model FormatONNX: Universal Model Format

Problem: You trained in PyTorch, but want to deploy on mobile/web.

Solution: ONNX (Open Neural Network Exchange)

Standard format for neural networks

Export from PyTorch, TensorFlow, etc.

Run on any platform

PyTorch Model → ONNX → ONNX Runtime → Any Device

18

Exporting to ONNXExporting to ONNX

import torch

Load model

model = MyModel()

model.load_state_dict(torch.load("model.pth"))

model.eval()

Dummy input (same shape as real input)

dummy_input = torch.randn(1, 3, 224, 224)

Export

torch.onnx.export(

 model,

 dummy_input,

 "model.onnx",

 input_names=['image'],

19

Running with ONNX RuntimeRunning with ONNX Runtime

import onnxruntime as ort

import numpy as np

Load ONNX model

session = ort.InferenceSession("model.onnx")

Prepare input

input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)

Run inference

outputs = session.run(

 None, # Get all outputs

 {'image': input_data}

)

print(f"Prediction: {outputs[0]}")

Benefits: 2-3x faster than PyTorch on CPU!

20

ONNX OptimizationsONNX Optimizations

ONNX Runtime automatically applies:

1. Operator fusion: Combine Conv + BatchNorm + ReLU into one

2. Constant folding: Pre-compute constants

3. Memory optimization: Reuse buffers

Before: Conv → BatchNorm → ReLU (3 operations)

After: ConvBNReLU (1 operation)

21

TensorFlow Lite (TFLite)TensorFlow Lite (TFLite)

For mobile deployment (Android/iOS):

import tensorflow as tf

Convert to TFLite

converter = tf.lite.TFLiteConverter.from_saved_model('model')

converter.optimizations = [tf.lite.Optimize.DEFAULT] # Quantize

tflite_model = converter.convert()

Save

with open('model.tflite', 'wb') as f:

 f.write(tflite_model)

TFLite is optimized for:

ARM processors (phones)

Edge TPU accelerators

Microcontrollers 22

Choosing the Right ApproachChoosing the Right Approach

Scenario Recommended Approach

Quick optimization Quantization (PTQ)

Maximum compression Quantization + Pruning

Best accuracy Knowledge distillation

Mobile app TensorFlow Lite

Cross-platform ONNX Runtime

Web browser ONNX + WebAssembly

Start with quantization - it's the easiest and most effective!

23

Benchmarking Your ModelBenchmarking Your Model

import time

import numpy as np

def benchmark(model, input_data, n_runs=100):

 """Measure average inference time."""

 # Warmup

 for _ in range(10):

 _ = model(input_data)

 # Benchmark

 times = []

 for _ in range(n_runs):

 start = time.perf_counter()

 _ = model(input_data)

 times.append(time.perf_counter() - start)

24

Before vs After OptimizationBefore vs After Optimization

Metric Original Optimized

Size 100 MB 25 MB

Latency 50 ms 12 ms

Memory 400 MB 100 MB

Accuracy 95.0% 94.5%

Trade-off: 0.5% accuracy for 4x smaller and 4x faster!

25

Deployment PipelineDeployment Pipeline

Train Model (Float32)

 ↓

Prune (optional)

 ↓

Quantize (Int8)

 ↓

Export (ONNX/TFLite)

 ↓

Benchmark on target device

 ↓

Deploy

26

Common Deployment TargetsCommon Deployment Targets

1. Mobile Apps

Use TensorFlow Lite or Core ML (iOS)

Optimize for ARM processors

Consider battery usage

2. Web Browser

Use ONNX.js or TensorFlow.js

Models must be small (< 10 MB)

Use WebGL for acceleration

3. Embedded/IoT

Use TensorFlow Lite Micro

Very limited memory (KB, not MB)

M d i li d d l

27

Real-World Example: Mobile AppReal-World Example: Mobile App

Original model: ResNet-50

Size: 98 MB

Latency: 200 ms

Optimization steps:

1. Replace with MobileNet-v2 (smaller architecture)

2. Quantize to Int8

3. Export to TFLite

Optimized model:

Size: 3.4 MB

Latency: 30 ms

Accuracy: 71% (vs 76% for ResNet)
28

Efficient Model ArchitecturesEfficient Model Architectures

Designed for mobile/edge:

Model Size Top-1 Accuracy Latency

MobileNet-v2 3.4 MB 71.8% 30 ms

EfficientNet-B0 5.3 MB 77.1% 45 ms

SqueezeNet 1.2 MB 57.5% 25 ms

vs. Desktop models:

| ResNet-50 | 98 MB | 76.1% | 200 ms |

| VGG-16 | 528 MB | 71.5% | 400 ms |

29

Tips for Edge DeploymentTips for Edge Deployment

1. Start with a smaller model

MobileNet instead of ResNet

DistilBERT instead of BERT

2. Always quantize

Easy 4x size reduction

Often 2-4x speed improvement

3. Profile on target device

Desktop performance ≠ Mobile performance

Test on actual hardware

4. Consider accuracy trade-offs

1 2% l i ll t bl

30

SummarySummary

Technique What it does When to use

Quantization 32-bit → 8-bit Always (first step)

Pruning Remove small weights Need more compression

Distillation Train smaller model Can afford retraining

ONNX Cross-platform format Non-Python deployment

TFLite Mobile format Android/iOS apps

31

Lab PreviewLab Preview

This week you'll:

1. Benchmark your model's size and speed

2. Apply quantization and measure improvement

3. Try pruning and compare results

4. Export to ONNX format

5. Run with ONNX Runtime

6. Compare all approaches

Result: An optimized model ready for edge deployment!

32

Interview QuestionsInterview Questions

Common interview questions on edge deployment:

1. "How would you deploy an ML model to a mobile device?"

Quantize: Reduce precision (FP32 → INT8) for 4x smaller size

Export to TFLite (Android/iOS) or Core ML (iOS)

Consider smaller architectures (MobileNet, DistilBERT)

Benchmark on actual device (not emulator)

2. "What is quantization and what are its trade-offs?"

Converting weights from 32-bit floats to 8-bit integers

Benefits: 4x smaller model, 2-4x faster inference

Trade-off: 1-2% accuracy loss (usually acceptable)

Types: post-training (easy) vs quantization-aware training (better)

33

Questions?Questions?

Key takeaways:

Quantization is the easiest win (4x smaller, 2-4x faster)

ONNX enables cross-platform deployment

Start with efficient architectures when possible

Always benchmark on target hardware

Next week: Profiling & Performance

34

