Profiling & Optimization

Week 13 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The Performance Problem

Training is expensive:

e GPT-3 cost ~$4.6M to train
e LLaMA-65B: ~$2-3M in compute

e Even small models can burn through credits

Inference at scale is costly:

» ChatGPT serves millions of requests/day

» 100ms latency improvement = $IM+ savings/year

Developer time is expensive:

e Slow iteration cycles reduce productivity

* 10 min/epoch - 100 epochs = 16+ hours waiting

Goal: Make code faster and more efficient without sacrificing accuracy.

The Optimization Mindset

Donald Knuth's wisdom:

"Premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%."

The correct process:

1. Make it work (correctness first)
2. Make it right (clean code, tests)
3. Profile to find bottlenecks (measure, don't guess!)

4. Make it fast (optimize the 3% that matters)

Common mistake: Optimizing code that runs once during initialization while ignoring the training loop that runs
millions of times.

The Doctor's Approach

Profiling is like a doctor's diagnosis. Don't prescribe medicine based on a hunch - run tests first.

Programmer: "My code is slow!"
Bad: "Let me rewrite in C++" (guessing)
Good: "Let me profile first" (measuring)

- Finds: data loading is 70% of time
- Fix: Add num workers=4
- Result: 2x faster, zero code changes!

The bottleneck is almost never where you expect it to be.

Performance Metrics Overview

Training metrics:

Throughput: Samples/second, batches/second

Epoch time: Total time to process entire dataset

GPU utilization: % of time GPU is actively computing

Memory usage: Peak memory allocated
Inference metrics:
» Latency: Time per prediction (p50, p95, p99)

 Throughput: Predictions/second

e First token latency: Time to first output (for GenAl)

Cost metrics:

e FLOPs: Floating point operations (theoretical) 5

The Optimization Loop

Baseline Model

ll. Start

Profile

é Analyze

[dentify
Bottleneck

5. Repeat
for next
ottleneck

Types of Bottlenecks

CPU-bound:

* Data loading and preprocessing
e Tokenization, data augmentation

e Host-to-device memory transfer

GPU compute-bound:

* Too many parameters
» |nefficient operations (small kernels, poor fusion)

» Suboptimal algorithms (e.g., naive attention)

GPU memory-bound:

e Out of memory (OOM) errors

e Batch size limited by VRAM 7

Profiling Tool Hierarchy

Level 1: Quick checks (seconds)

e nvidia-smi : GPU utilization snapshot
e time command: Total execution time

e Manual timers: time.time() , time.perf counter()
Level 2: Python profiling (minutes)
e cProfile : Function-level CPU profiling

e line profiler : Line-by-line profiling

e memory profiler : Memory usage per line

Level 3: Deep profiling (hours)

e PyTorch Profiler: Op-level GPU/CPU profiling
e Nsight Systems: System-wide CUDA profiling

Quick Check: nvidia-smi

Basic monitoring:

nvidia-smi

Watch mode (update every 1 second):

Key metrics:

GPU-Util: % of time GPU was busy (aim for >85%)

Memory-Usage: Current / Total VRAM

Power: Current draw vs TDP

Temperature: Thermal throttling at ~85°C

Red flags:

* GPU-Util < 50%: Likely CPU bottleneck

Python Profiling: cProfile

Built-in function-level profiler:

cProfile
pstats

profiler = cProfile.Profile()
profiler.enable()

train model()

profiler.disable()

Output columns:

ncalls : Number of calls

tottime : Total time in function (excluding sub-calls)

cumtime : Cumulative time (including sub-calls)

percall : Time per call [

cProfile Example Output

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.002 0.002 45.231 45.231 train.py:23(train_epoch)
1563 12.450 0.008 30.125 0.019 dataloader.py:45(next)
1563 8.234 0.005 15.678 0.010 transforms.py:12(augment)
156300 4.123 0.000 4.123 0.000 {method 'random' of ' random.Random'}
1563 3.456 0.002 10.234 0.007 model.py:67(forward)

Analysis:
e Dataloading (next) takes 30s out of 45s - CPU bottleneck!

 Random augmentation is expensive — consider caching or GPU augmentation

* Model forward pass is fast (10s) — GPU is underutilized

1

Line-Level Profiling: line_profiler

More granular than cProfile:

line profiler LineProfiler

lp = LineProfiler()
lp.add function(preprocess data)
lp.add function(model.forward)

lp.enable()
train one epoch()
lp.disable()
lp.print stats()

Time Per Hit ' Line Contents

12500.0 12500.0 . i cv2.imread(path)
8500.0 8500.0 . i cv2.resize(img, (224, 224))
6700.0 6700.0 . i normalize(img)

Insight: cv2.imread is the slowest - use faster libraries or cache.

Memory Profiling: memory_profiler

Track memory usage line by line:

memory profiler profile

@profile
train step(batch):
images, labels = batch
images = images.cuda()
outputs = model(images)
loss = criterion(outputs, labels)

Increment Line Contents

2145 MB images, labels = batch

4290 MB 2145 MB images = images.cuda()

8580 MB 4290 MB outputs = model(images)

8585 MB loss = criterion(outputs, labels)
12875 MB loss.backward

Insight: Gradients double memory (line 5) - use gradient checkpointing.

PyTorch Built-in Profiling

Torch profiler with CPU/GPU tracing:

torch.profiler profile, record function, ProfilerActivity

profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record shapes= ,
profile memory=
with stack=
prof:

record function("train epoch"):

i, batch enumerate(dataloader):

i >= 10:

record function("forward"):
output = model(batch)

PyTorch Profiler Output

Table view:

print(prof.key averages().table(
sort by="cuda time total",
row limit=10

Self CPU time Self CUDA time

: tbatch norm
: :linear

Insights:

» Convolutions dominate GPU time (expected)

« HtoD memcpy is 23ms — data transfer bottleneck! Use pin memory 15

TensorBoard Profiler Visualization

Export for TensorBoard:

profile(

activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],

on_trace ready=torch.profiler.tensorboard trace handler('./log/resnetl8")
prof:

View in TensorBoard:

tensorboard --logdir=./log

Visualizations:

Timeline: See GPU kernels, data loading, CPU ops on timeline

Operator view: Breakdown by operation type

Kernel view: GPU kernel efficiency

Trace view: Detailed event trace Le

Interpreting GPU Timeline

Ideal timeline:

cPu: [(100% busy)
cu:[ll lH H H H H B B B B B (loading data)

CPU bottleneck:

GPU: | B B B B B B (idle gaps)
ceu: I (100% busy)

A A A
Gaps while waiting for data!

Memory transfer bottleneck:

(memcpy)
A Large memory transfers stalling GPU

Data Loading Optimization

Problem: GPU idle while CPU loads data.
Solutions:

1. Multi-process data loading:

DatalLoader(dataset,
batch size=32,
num workers=4,
pin _memory= ,
persistent workers=

2. Prefetching (automatic with num workers > 0):

Worker 1: Load batch 1 - Load batch 3 - Load batch 5
Worker 2: Load batch 2 - Load batch 4 - Load batch 6
GPU: Process batch 1 -» Process batch 2 - Process batch 3

Data Loading Best Practices

Rule of thumb for num workers :

e Start with num workers = min(4, num cpus)
 Profile and tune (diminishing returns after ~8)

e Too many workers - memory overhead

Optimization checkilist:

DatalLoader(
dataset,

batch size=32,
num workers=4,

Nin _momarv—

Advanced: GPU preprocessing:

kornia.augmentation K
augment = K.AugmentationSequential(

Mixed Precision Training Theory

Float32 (FP32):

e 1 sign bit, 8 exponent bits, 23 fraction bits
e Range: ~10"-38 to 10"38

e Standard for training
Float16 (FP16):
e 1sign bit, 5 exponent bits, 10 fraction bits

e Range: ~10"-8 to 65504

e 2X memory savings, 2-3x speedup on Tensor Cores

Problem with pure FP16:

e Small gradients underflow to zero

e Large activations overflow to infinity 20

The Precision Goldilocks Zone

Use "just enough" precision for each operation. Match the tool to the task's needs.

Master weights FP32 Accumulate tiny updates
Forward pass FP16 Just math, speed matters
Loss scaling FP32 Small values matter

Softmax FP32 Numerical stability

21

Automatic Mixed Precision (AMP)

Solution: Mixed precision training

Strategy:

1. Master weights in FP32 (stored in optimizer)
2. Forward pass in FP16 (faster)

3. Loss in FP32 (precision for small values)

4. Backward pass in FP16 (faster)

5. Gradient scaling to prevent underflow

6. Weight update in FP32 (master weights)

Gradient scaling:

e Multiply loss by scale factor (e.g., 1024) before backward

e Prevents small gradients from becoming zero in FP16
22

* Unscale gradients before optimizer step

AMP Implementation in PyTorch

torch.cuda.amp autocast, GradScaler

model = MyModel().cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=le-3)
scaler = GradScaler()

epoch range(num_epochs):
batch dataloader:
images, labels batch
images, labels images.cuda(), labels.cuda()

optimizer.zero grad()
autocast():

outputs = model(images)

lnce — rriterinan(nutnutc

Expected speedup: 1.5-3x on V100/A100/H100 GPUs with Tensor Cores.

AMP Best Practices

When to use AMP:

e Training CNNs, Transformers on modern GPUs (V100+)

» Large batch sizes (better Tensor Core utilization)

* Models with lots of matrix multiplications

When NOT to use AMP:

X

 Small models on old GPUs (no Tensor Cores)

X

e Models with numerical instability

X

* When accuracy drops significantly (rare)

24
Debugging AMP issues:

Memory Optimization: Gradient Checkpointing

Problem: Storing all activations for backprop uses O(N) memory.

Example (4-layer network):

Forward: Input - Actl - Act2 - Act3 - Act4 - Loss
Backward: VLoss « VAct4 < VAct3 « VAct2 « VActl

A A A A A
Need to store all activations!

Memory usage: Batch_size x Num_layers x Hidden_dim

Solution: Gradient Checkpointing (Recomputation)

» Store only subset of activations (checkpoints)
 Recompute others during backward pass

e Trade: 20-30% slower for 50%+ memory savings

25

Gradient Checkpointing in PyTorch

torch.utils.checkpoint checkpoint

MyModel (nn.Module) :
__init (self):
super(). init ()
self.layerl nn.Linear (1024, 1024)
self.layer2 nn.Linear (1024, 1024)
self.layer3 nn.Linear (1024, 1024)

forward(self, x):
checkpoint.checkpoint(self. forward layers, x)
self.layer3(x)

X

_forward layers(self, x):

Use case: Train larger models/batches that otherwise OOM.

Gradient Accumulation

Problem: Limited GPU memory — small batch size - poor convergence.

Solution: Accumulate gradients over multiple steps.

accumulation steps

optimizer.zero grad()
i, batch enumerate(dataloader):
outputs = model(batch)
loss criterion(outputs, labels)

= loss / accumulation steps
backward()

(i + 1) % accumulation_steps ==
optimizer.step()
optimizer.zero grad()

Effect: Simulates large batch training with limited memory.

Compute Optimization: torch.compile

PyTorch 2.0+ feature: JIT compilation for speedups.

torch

MyModel ()
torch.compile(model)

batch dataloader:
output = model(batch)

What it does:

Graph capture: Traces model operations

Operator fusion: Merges ops (e.g., Conv+BN+ReLU - 1 kernel)

Memory optimization: Reuses buffers

CUDA graph: Reduces kernel launch overhead

28
Expected speedup: 10-50% for free!

torch.compile Modes

compile(model)
compile(model, mode="max-autotune")
compile(model, mode="reduce-overhead")

compile(model, mode="default", dynamic=

Caveats:

* First runis slow (compilation overhead)

* Not all operations supported (fallback to eager)

* Dynamic shapes can trigger recompilation

Operator Fusion Example

Without fusion (3 kernel launches):

conv(input)
bn(x)
relu(x)

With fusion (1 kernel launch):

X = conv_bn relu(input)

Benefits:

 Fewer kernel launches (less overhead)
* Reduced memory bandwidth (no intermediate writes)

e Better cache locality

torch.compile does this automatically! 30

Flash Attention

Problem: Standard attention has O(N?) memory complexity.

Standard attention:

scores = Q @ K.T
attn = softmax(scores)

Flash Attention (Dao et al., 2022):

» Tiled computation (never materialize full matrix)
» Fused kernel (attention + softmax in one pass)

e Result: 2-4x speedup, O(N) memory instead of O(N?)

Usage:

torch.nn.functional scaled dot product attention

System-Level Optimization

CPU affinity (bind processes to cores):

taskset -c 0-7 python train.py

NUMA awareness (multi-socket systems):

numactl --cpunodebind=0 --membind=0 python train.py

PCle optimization (multi-GPU):

os.environ["CUDA VISIBLE DEVICES"] = "0,1"

Storage 1/0:

e Use SSD over HDD for datasets

* Use RAM disk for small datasets (tmpfs) >

Benchmarking Best Practices

1. Warmup runs (JIT compilation, cache warming):

B range(10):
model (dummy input)

start = time.time()
B range(100):
model (input data)

2. Multiple runs (reduce variance):

numpy np
times = []
range(100) :

start = time.perf counter()
model (input data)
times.append(time.perf counter() - start)

print(f"Mean: {np.mean(times)*1000:.2f} ms") 3
nrint(f"Std: I{no <std(time<s)*1000: 2FfY mc")

Benchmarking Checklist

Environment control:

[] Disable CPU frequency scaling (performance mode)

[] Close background applications

[] Fix random seeds (torch.manual seed(42))

[] Use same device (GPU vs CPU)

Measurement:

[1 Warmup before timing (10+ iterations)

[1 Measure multiple runs (100+)

[1 Report mean, std, percentiles (p50, p95, p99)

[] Synchronize CUDA ops (torch.cuda.synchronize())

Comparison:

34

Common Performance Anti-Patterns

1. Implicit CPU-GPU synchronization:

i, batch enumerate(dataloader):
loss = train step(batch)
print(f"Loss: {loss.item()}")

losses = []
1, batch enumerate(dataloader):
loss = train step(batch)
losses.append(loss.detach())
i % 100 == 0:
print(f"Avg loss: {torch.stack(losses).mean()}")

2. Small batch sizes (underutilize GPU):

e Batch size 1-8: Poor GPU utilization

e Batch size 32-128: Better (saturate GPU)

Common Performance Anti-Patterns (2)

3. Unnecessary data transfers:

batch dataloader:
batch = batch.cuda()

dataloader = DatalLoader(..., pin memory=
batch dataloader:
batch = batch.cuda(non_blocking=

4. Inefficient tensor operations:

result = []
i range(len(tensor)):
result.append(tensor[i] * 2)

result = tensor * 2

Case Study: Training Speedup

Baseline ResNet-50 on ImageNet:

 Batch size: 32
e Time per epoch: 120 minutes

e GPU utilization: 45%

Optimization steps:

Baseline 1.0x 120 min
+ num_workers=8 1.4x 86 min
+ Mixed precision (AMP) 1.9x 45 min
+ Larger batch (32 -128) 2.3X 37 min
+ torch.compile 2.8X 31 min

Final result: 2.8x speedup, 74% faster! 37

Case Study: Memory Optimization

Problem: Training LLaMA-7B on single A100 (40GB VRAM) OOMs.

Optimization steps:

Baseline FP32 52 GB OOM
FP16 26 GB 1

+ Gradient checkpointing 18 GB 2

+ Gradient accumulation 18 GB 8 (effective)
+ Flash Attention 14 GB 4

Result: Fits on single GPU with effective batch size of 16!

38

Profiling Workflow Summary

Step 1: Establish baseline

e Measure throughput, latency, memory
* Profile with PyTorch Profiler
* |dentify bottleneck category (CPU/GPU compute/GPU memory/I/O)

Step 2: Apply targeted optimization

CPU bottleneck - num workers , prefetching

GPU compute -~ AMP, torch.compile , algorithmic improvements

GPU memory - gradient checkpointing, smaller batch, model parallelism

|/O - faster storage, caching, data format (HDF5, LMDB)

Step 3: Measure impact

e Re-run profiling 39

Optimization Priority

Quick wins (do first):

1. Enable AMP (5 min, 1.5-2x speedup)

2. Tune num workers (10 min, 1.2-1.5x speedup)

3. Use torch.compile (1line, 1.1-1.5x speedup)

4. Enable pin memory=True (1 parameter, 1.1x speedup)

Medium effort (if needed):

5.
Lo

Gradient accumulation (if memory-limited)
6.
S

Larger batch size (if hardware allows)
7.

~ A .

40

Tools Ecosystem Summary

Profiling:

e nvidia-smi : GPU monitoring
e cProfile : Python function profiling
e line profiler : Line-level profiling

e memory profiler : Memory usage

PyTorch Profiler: Deep PyTorch profiling

TensorBoard: Visual profiling

Nsight Systems/Compute: Expert CUDA profiling
Optimization:
* torch.cuda.amp : Mixed precision

e torch.compile : Graph optimization

e torch.utils.checkpoint : Gradient checkpointing

41

Lab Preview

Today's mission:

. Part 1: Profile ResNet-18 training and identify bottlenecks
. Part 2: Optimize data loading (num_workers, pin_memory)
. Part 3: Apply mixed precision training (AMP)

. Part 4: Use gradient checkpointing to fit larger batch

. Part 5: Apply torch.compile and measure speedup

o o B~ W N

. Part 6: Create comprehensive performance comparison

Deliverable: Optimization report showing 2-3x speedup!

42

LCOAELCENWEVE

1. Always profile before optimizing - measure, don't guess

2. Focus on the critical path - optimize what matters (training loop)

3. Quick wins first - AMP, num_workers, torch.compile are easy

4. Memory vs speed trade-offs - gradient checkpointing, accumulation
5. Benchmark properly - warmup, multiple runs, synchronization

6. Iterative process - profile - optimize . measure - repeat

Remember: A 2x speedup means 2x more experiments, faster iteration, and cheaper costs!

43

Interview Questions

Common interview questions on profiling and optimization:

1. "How would you speed up a slow training pipeline?"

o Profile first (PyTorch Profiler, nvidia-smi)
o Common fixes: increase num_workers, enable AMP, use torch.compile
o Check GPU utilization - low % means CPU bottleneck

o Increase batch size if memory allows
2. "What is mixed precision training and why use it?"

o Use FP16 for forward/backward, FP32 for gradient updates
o Benefits: 1.5-2x speedup, half memory usage
o PyTorch: torch.cuda.amp.autocast() + GradScaler

o Safe for most models; watch for loss scaling issues

44

Additional Resources

Documentation:

e PyTorch Profiler: https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
e PyTorch Performance Tuning: https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

e torch.compile: https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
Papers:
» Mixed Precision Training (Micikevicius et al., 2018)

» Flash Attention (Dao et al., 2022)
e Gradient Checkpointing (Chen et al., 2016)

Tools:

e TensorBoard: https://www.tensorflow.org/tensorboard

e Nsight Systems: https://developer.nvidia.com/nsight-systems 45

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://www.tensorflow.org/tensorboard
https://developer.nvidia.com/nsight-systems
https://github.com/benfred/py-spy

