
Profiling & OptimizationProfiling & Optimization
Week 13 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The Performance ProblemThe Performance Problem

Training is expensive:

GPT-3 cost ~$4.6M to train

LLaMA-65B: ~$2-3M in compute

Even small models can burn through credits

Inference at scale is costly:

ChatGPT serves millions of requests/day

100ms latency improvement = $1M+ savings/year

Developer time is expensive:

Slow iteration cycles reduce productivity

10 min/epoch → 100 epochs = 16+ hours waiting

Goal: Make code faster and more efficient without sacrificing accuracy.
2

The Optimization MindsetThe Optimization Mindset

Donald Knuth's wisdom:

"Premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%."

The correct process:

1. Make it work (correctness first)

2. Make it right (clean code, tests)

3. Profile to find bottlenecks (measure, don't guess!)

4. Make it fast (optimize the 3% that matters)

Common mistake: Optimizing code that runs once during initialization while ignoring the training loop that runs

millions of times.

3

The Doctor's ApproachThe Doctor's Approach

Profiling is like a doctor's diagnosis. Don't prescribe medicine based on a hunch - run tests first.

Programmer: "My code is slow!"

Bad: "Let me rewrite in C++" (guessing)

Good: "Let me profile first" (measuring)

 → Finds: data loading is 70% of time

 → Fix: Add num_workers=4

 → Result: 2x faster, zero code changes!

The bottleneck is almost never where you expect it to be.

4

Performance Metrics OverviewPerformance Metrics Overview

Training metrics:

Throughput: Samples/second, batches/second

Epoch time: Total time to process entire dataset

GPU utilization: % of time GPU is actively computing

Memory usage: Peak memory allocated

Inference metrics:

Latency: Time per prediction (p50, p95, p99)

Throughput: Predictions/second

First token latency: Time to first output (for GenAI)

Cost metrics:

FLOPs: Floating point operations (theoretical)

E kWh d

5

The Optimization LoopThe Optimization Loop

6

Types of BottlenecksTypes of Bottlenecks

CPU-bound:

Data loading and preprocessing

Tokenization, data augmentation

Host-to-device memory transfer

GPU compute-bound:

Too many parameters

Inefficient operations (small kernels, poor fusion)

Suboptimal algorithms (e.g., naive attention)

GPU memory-bound:

Out of memory (OOM) errors

Batch size limited by VRAM

M b d id h i

7

Profiling Tool HierarchyProfiling Tool Hierarchy

Level 1: Quick checks (seconds)

nvidia-smi : GPU utilization snapshot

time command: Total execution time

Manual timers: time.time() , time.perf_counter()

Level 2: Python profiling (minutes)

cProfile : Function-level CPU profiling

line_profiler : Line-by-line profiling

memory_profiler : Memory usage per line

Level 3: Deep profiling (hours)

PyTorch Profiler: Op-level GPU/CPU profiling

Nsight Systems: System-wide CUDA profiling

T B d Vi l i li l i

8

Quick Check: nvidia-smiQuick Check: nvidia-smi

Basic monitoring:

nvidia-smi

Watch mode (update every 1 second):

nvidia-smi -l 1

Key metrics:

GPU-Util: % of time GPU was busy (aim for >85%)

Memory-Usage: Current / Total VRAM

Power: Current draw vs TDP

Temperature: Thermal throttling at ~85°C

Red flags:

GPU-Util < 50%: Likely CPU bottleneck
9

Python Profiling: cProfilePython Profiling: cProfile

Built-in function-level profiler:

import cProfile

import pstats

Profile a function

profiler = cProfile.Profile()

profiler.enable()

train_model() # Your code here

profiler.disable()

Output columns:

ncalls : Number of calls

tottime : Total time in function (excluding sub-calls)

cumtime : Cumulative time (including sub-calls)

percall : Time per call 10

cProfile Example OutputcProfile Example Output

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.002 0.002 45.231 45.231 train.py:23(train_epoch)

 1563 12.450 0.008 30.125 0.019 dataloader.py:45(__next__)

 1563 8.234 0.005 15.678 0.010 transforms.py:12(augment)

 156300 4.123 0.000 4.123 0.000 {method 'random' of '_random.Random'}

 1563 3.456 0.002 10.234 0.007 model.py:67(forward)

Analysis:

Data loading (__next__) takes 30s out of 45s → CPU bottleneck!

Random augmentation is expensive → consider caching or GPU augmentation

Model forward pass is fast (10s) → GPU is underutilized

11

Line-Level Profiling: line_profilerLine-Level Profiling: line_profiler

More granular than cProfile:

from line_profiler import LineProfiler

lp = LineProfiler()

lp.add_function(preprocess_data)

lp.add_function(model.forward)

lp.enable()

train_one_epoch()

lp.disable()

lp.print stats()

Output:

Line # Hits Time Per Hit % Time Line Contents

==

 15 1 12500.0 12500.0 45.2 img = cv2.imread(path)

 16 1 8500.0 8500.0 30.7 img = cv2.resize(img, (224, 224))

 17 1 6700.0 6700.0 24.1 img = normalize(img)

Insight: cv2.imread is the slowest → use faster libraries or cache.
12

Memory Profiling: memory_profilerMemory Profiling: memory_profiler

Track memory usage line by line:

from memory_profiler import profile

@profile

def train_step(batch):

 images, labels = batch # Line 1

 images = images.cuda() # Line 2

 outputs = model(images) # Line 3

 loss = criterion(outputs, labels) # Line 4

l b k d() # Li 5

Output:

Line # Mem usage Increment Line Contents

==

 1 2145 MB 0 MB images, labels = batch

 2 4290 MB 2145 MB images = images.cuda()

 3 8580 MB 4290 MB outputs = model(images)

 4 8585 MB 5 MB loss = criterion(outputs, labels)

 5 12875 MB 4290 MB loss.backward()

Insight: Gradients double memory (line 5) → use gradient checkpointing.
13

PyTorch Built-in ProfilingPyTorch Built-in Profiling

Torch profiler with CPU/GPU tracing:

from torch.profiler import profile, record_function, ProfilerActivity

with profile(

 activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],

 record_shapes=True,

 profile_memory=True,

 with_stack=True

) as prof:

 with record_function("train_epoch"):

 for i, batch in enumerate(dataloader):

 if i >= 10: # Profile first 10 batches

 break

 with record_function("forward"):

 output = model(batch)

14

PyTorch Profiler OutputPyTorch Profiler Output

Table view:

print(prof.key_averages().table(

 sort_by="cuda_time_total",

 row_limit=10

))

Output:

--- ------------

Name Self CPU time Self CUDA time

--- ------------

aten::conv2d 1.2ms 125.4ms

aten::batch_norm 0.8ms 45.2ms

aten::linear 0.5ms 78.3ms

Insights:

Convolutions dominate GPU time (expected)

HtoD memcpy is 23ms → data transfer bottleneck! Use pin_memory 15

TensorBoard Profiler VisualizationTensorBoard Profiler Visualization

Export for TensorBoard:

with profile(

 activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],

 on_trace_ready=torch.profiler.tensorboard_trace_handler('./log/resnet18')

) as prof:

 train()

View in TensorBoard:

tensorboard --logdir=./log

Visualizations:

Timeline: See GPU kernels, data loading, CPU ops on timeline

Operator view: Breakdown by operation type

Kernel view: GPU kernel efficiency

Trace view: Detailed event trace 16

Interpreting GPU TimelineInterpreting GPU Timeline

Ideal timeline:

GPU: ██ (100% busy)

CPU: ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ ██ (loading data)

CPU bottleneck:

GPU: ██ ██ ██ ██ ██ ██ ██ (idle gaps)

CPU: ██ (100% busy)

 ▲ ▲ ▲

 Gaps while waiting for data!

Memory transfer bottleneck:

GPU: ██ ██ ██ ██ ██ ██

MEM: ░░██████░░██████░░██████░░██████░░██████░░ (memcpy)

 ▲ Large memory transfers stalling GPU

17

Data Loading OptimizationData Loading Optimization

Problem: GPU idle while CPU loads data.

Solutions:

1. Multi-process data loading:

DataLoader(dataset,

 batch_size=32,

 num_workers=4, # Spawn 4 worker processes

 pin_memory=True, # Faster GPU transfer

 persistent_workers=True # Reuse workers across epochs

)

2. Prefetching (automatic with num_workers > 0):

Worker 1: Load batch 1 → Load batch 3 → Load batch 5

Worker 2: Load batch 2 → Load batch 4 → Load batch 6

GPU: Process batch 1 → Process batch 2 → Process batch 3

18

Data Loading Best PracticesData Loading Best Practices

Rule of thumb for num_workers :

Start with num_workers = min(4, num_cpus)

Profile and tune (diminishing returns after ~8)

Too many workers → memory overhead

Optimization checklist:

DataLoader(

 dataset,

 batch_size=32,

 num_workers=4, # Multi-process loading

pin memory=True # Faster H2D transfer (if using GPU)

Advanced: GPU preprocessing:

Use NVIDIA DALI or Kornia for GPU-accelerated augmentation

import kornia.augmentation as K

augment = K.AugmentationSequential(

K R d H i t lFli (0 5)

19

Mixed Precision Training TheoryMixed Precision Training Theory

Float32 (FP32):

1 sign bit, 8 exponent bits, 23 fraction bits

Range: ~10^-38 to 10^38

Standard for training

Float16 (FP16):

1 sign bit, 5 exponent bits, 10 fraction bits

Range: ~10^-8 to 65504

2x memory savings, 2-3x speedup on Tensor Cores

Problem with pure FP16:

Small gradients underflow to zero

Large activations overflow to infinity

T i i di l

20

The Precision Goldilocks ZoneThe Precision Goldilocks Zone

Use "just enough" precision for each operation. Match the tool to the task's needs.

Operation Precision Why?

Master weights FP32 Accumulate tiny updates

Forward pass FP16 Just math, speed matters

Loss scaling FP32 Small values matter

Softmax FP32 Numerical stability

21

Automatic Mixed Precision (AMP)Automatic Mixed Precision (AMP)

Solution: Mixed precision training

Strategy:

1. Master weights in FP32 (stored in optimizer)

2. Forward pass in FP16 (faster)

3. Loss in FP32 (precision for small values)

4. Backward pass in FP16 (faster)

5. Gradient scaling to prevent underflow

6. Weight update in FP32 (master weights)

Gradient scaling:

Multiply loss by scale factor (e.g., 1024) before backward

Prevents small gradients from becoming zero in FP16

Unscale gradients before optimizer step
22

AMP Implementation in PyTorchAMP Implementation in PyTorch

from torch.cuda.amp import autocast, GradScaler

model = MyModel().cuda()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

scaler = GradScaler() # Gradient scaler

for epoch in range(num_epochs):

 for batch in dataloader:

 images, labels = batch

 images, labels = images.cuda(), labels.cuda()

 optimizer.zero_grad()

 # Forward in FP16

 with autocast():

 outputs = model(images)

loss = criterion(outputs labels)

Expected speedup: 1.5-3x on V100/A100/H100 GPUs with Tensor Cores.

23

AMP Best PracticesAMP Best Practices

When to use AMP:

Training CNNs, Transformers on modern GPUs (V100+)

Large batch sizes (better Tensor Core utilization)

Models with lots of matrix multiplications

When NOT to use AMP:

Small models on old GPUs (no Tensor Cores)

Models with numerical instability

When accuracy drops significantly (rare)

Debugging AMP issues:
24

Memory Optimization: Gradient CheckpointingMemory Optimization: Gradient Checkpointing

Problem: Storing all activations for backprop uses O(N) memory.

Example (4-layer network):

Forward: Input → Act1 → Act2 → Act3 → Act4 → Loss

Backward: ∇Loss ← ∇Act4 ← ∇Act3 ← ∇Act2 ← ∇Act1

 ▲ ▲ ▲ ▲ ▲

 Need to store all activations!

Memory usage: Batch_size × Num_layers × Hidden_dim

Solution: Gradient Checkpointing (Recomputation)

Store only subset of activations (checkpoints)

Recompute others during backward pass

Trade: 20-30% slower for 50%+ memory savings

25

Gradient Checkpointing in PyTorchGradient Checkpointing in PyTorch

import torch.utils.checkpoint as checkpoint

class MyModel(nn.Module):

 def __init__(self):

 super().__init__()

 self.layer1 = nn.Linear(1024, 1024)

 self.layer2 = nn.Linear(1024, 1024)

 self.layer3 = nn.Linear(1024, 1024)

 def forward(self, x):

 # Checkpoint layer1 and layer2

 x = checkpoint.checkpoint(self._forward_layers, x)

 x = self.layer3(x)

 return x

 def _forward_layers(self, x):

Use case: Train larger models/batches that otherwise OOM.

26

Gradient AccumulationGradient Accumulation

Problem: Limited GPU memory → small batch size → poor convergence.

Solution: Accumulate gradients over multiple steps.

accumulation_steps = 4 # Effective batch size = 32 * 4 = 128

optimizer.zero_grad()

for i, batch in enumerate(dataloader):

 outputs = model(batch)

 loss = criterion(outputs, labels)

 # Normalize loss by accumulation steps

 loss = loss / accumulation_steps

 loss.backward()

 # Only step optimizer every N batches

 if (i + 1) % accumulation_steps == 0:

 optimizer.step()

 optimizer.zero_grad()

Effect: Simulates large batch training with limited memory. 27

Compute Optimization: torch.compileCompute Optimization: torch.compile

PyTorch 2.0+ feature: JIT compilation for speedups.

import torch

model = MyModel()

model = torch.compile(model) # Compile the model

Training loop unchanged

for batch in dataloader:

 output = model(batch) # First run: compile, subsequent: fast!

What it does:

Graph capture: Traces model operations

Operator fusion: Merges ops (e.g., Conv+BN+ReLU → 1 kernel)

Memory optimization: Reuses buffers

CUDA graph: Reduces kernel launch overhead

Expected speedup: 10-50% for free!
28

torch.compile Modestorch.compile Modes

Default mode (balanced)

model = torch.compile(model)

Maximum performance (slower compile time)

model = torch.compile(model, mode="max-autotune")

Reduce memory usage

model = torch.compile(model, mode="reduce-overhead")

Debug mode (disable optimizations)

model = torch.compile(model, mode="default", dynamic=True)

Caveats:

First run is slow (compilation overhead)

Not all operations supported (fallback to eager)

Dynamic shapes can trigger recompilation

29

Operator Fusion ExampleOperator Fusion Example

Without fusion (3 kernel launches):

x = conv(input) # Kernel 1: Convolution

x = bn(x) # Kernel 2: Batch norm

x = relu(x) # Kernel 3: ReLU

With fusion (1 kernel launch):

x = conv_bn_relu(input) # Single fused kernel

Benefits:

Fewer kernel launches (less overhead)

Reduced memory bandwidth (no intermediate writes)

Better cache locality

torch.compile does this automatically! 30

Flash AttentionFlash Attention

Problem: Standard attention has O(N²) memory complexity.

Standard attention:

Materialize full N×N attention matrix

scores = Q @ K.T # (N, N) matrix

attn = softmax(scores) # (N, N) matrix

Flash Attention (Dao et al., 2022):

Tiled computation (never materialize full matrix)

Fused kernel (attention + softmax in one pass)

Result: 2-4x speedup, O(N) memory instead of O(N²)

Usage:

from torch.nn.functional import scaled_dot_product_attention

PyTorch 2.0+ uses Flash Attention automatically!

31

System-Level OptimizationSystem-Level Optimization

CPU affinity (bind processes to cores):

taskset -c 0-7 python train.py # Use cores 0-7

NUMA awareness (multi-socket systems):

numactl --cpunodebind=0 --membind=0 python train.py

PCIe optimization (multi-GPU):

Use GPUs on same PCIe switch

os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" # Same switch

Avoid: GPUs across different switches (slower P2P)

Storage I/O:

Use SSD over HDD for datasets

Use RAM disk for small datasets (tmpfs) 32

Benchmarking Best PracticesBenchmarking Best Practices

1. Warmup runs (JIT compilation, cache warming):

for _ in range(10):

 model(dummy_input) # Warmup

Now measure

start = time.time()

for _ in range(100):

 model(input_data)

l d i i ()

2. Multiple runs (reduce variance):

import numpy as np

times = []

for _ in range(100):

 start = time.perf_counter()

 model(input_data)

 times.append(time.perf_counter() - start)

print(f"Mean: {np.mean(times)*1000:.2f} ms")

print(f"Std: {np.std(times)*1000:.2f} ms")

33

Benchmarking ChecklistBenchmarking Checklist

Environment control:

[] Disable CPU frequency scaling (performance mode)

[] Close background applications

[] Fix random seeds (torch.manual_seed(42))

[] Use same device (GPU vs CPU)

Measurement:

[] Warmup before timing (10+ iterations)

[] Measure multiple runs (100+)

[] Report mean, std, percentiles (p50, p95, p99)

[] Synchronize CUDA ops (torch.cuda.synchronize())

Comparison:

[] S h d P T h i

34

Common Performance Anti-PatternsCommon Performance Anti-Patterns

1. Implicit CPU-GPU synchronization:

BAD: Forces sync every iteration

for i, batch in enumerate(dataloader):

 loss = train_step(batch)

 print(f"Loss: {loss.item()}") # .item() syncs!

GOOD: Batch logging

losses = []

for i, batch in enumerate(dataloader):

 loss = train_step(batch)

 losses.append(loss.detach()) # No sync

if i % 100 == 0:

 print(f"Avg loss: {torch.stack(losses).mean()}")

2. Small batch sizes (underutilize GPU):

Batch size 1-8: Poor GPU utilization

Batch size 32-128: Better (saturate GPU) 35

Common Performance Anti-Patterns (2)Common Performance Anti-Patterns (2)

3. Unnecessary data transfers:

BAD: Transfer to GPU every iteration

for batch in dataloader:

 batch = batch.cuda() # Slow!

GOOD: Use pin_memory + non_blocking

dataloader = DataLoader(..., pin_memory=True)

for batch in dataloader:

 batch = batch.cuda(non_blocking=True) # Faster!

4. Inefficient tensor operations:

BAD: Python loop

result = []

for i in range(len(tensor)):

 result.append(tensor[i] * 2)

GOOD: Vectorized operation

result = tensor * 2 # Much faster! 36

Case Study: Training SpeedupCase Study: Training Speedup

Baseline ResNet-50 on ImageNet:

Batch size: 32

Time per epoch: 120 minutes

GPU utilization: 45%

Optimization steps:

Optimization Speedup Cumulative Time

Baseline 1.0x 120 min

+ num_workers=8 1.4x 86 min

+ Mixed precision (AMP) 1.9x 45 min

+ Larger batch (32→128) 2.3x 37 min

+ torch.compile 2.8x 31 min

Final result: 2.8x speedup, 74% faster! 37

Case Study: Memory OptimizationCase Study: Memory Optimization

Problem: Training LLaMA-7B on single A100 (40GB VRAM) OOMs.

Optimization steps:

Technique Memory Usage Batch Size

Baseline FP32 52 GB OOM

FP16 26 GB 1

+ Gradient checkpointing 18 GB 2

+ Gradient accumulation 18 GB 8 (effective)

+ Flash Attention 14 GB 4

Result: Fits on single GPU with effective batch size of 16!

38

Profiling Workflow SummaryProfiling Workflow Summary

Step 1: Establish baseline

Measure throughput, latency, memory

Profile with PyTorch Profiler

Identify bottleneck category (CPU/GPU compute/GPU memory/I/O)

Step 2: Apply targeted optimization

CPU bottleneck → num_workers , prefetching

GPU compute → AMP, torch.compile , algorithmic improvements

GPU memory → gradient checkpointing, smaller batch, model parallelism

I/O → faster storage, caching, data format (HDF5, LMDB)

Step 3: Measure impact

Re-run profiling

C i

39

Optimization PriorityOptimization Priority

Quick wins (do first):

1. Enable AMP (5 min, 1.5-2x speedup)

2. Tune num_workers (10 min, 1.2-1.5x speedup)

3. Use torch.compile (1 line, 1.1-1.5x speedup)

4. Enable pin_memory=True (1 parameter, 1.1x speedup)

Medium effort (if needed):

5.

Gradient accumulation (if memory-limited)

6.

Larger batch size (if hardware allows)

7.
40

Tools Ecosystem SummaryTools Ecosystem Summary

Profiling:

nvidia-smi : GPU monitoring

cProfile : Python function profiling

line_profiler : Line-level profiling

memory_profiler : Memory usage

PyTorch Profiler: Deep PyTorch profiling

TensorBoard: Visual profiling

Nsight Systems/Compute: Expert CUDA profiling

Optimization:

torch.cuda.amp : Mixed precision

torch.compile : Graph optimization

torch.utils.checkpoint : Gradient checkpointing 41

Lab PreviewLab Preview

Today's mission:

1. Part 1: Profile ResNet-18 training and identify bottlenecks

2. Part 2: Optimize data loading (num_workers, pin_memory)

3. Part 3: Apply mixed precision training (AMP)

4. Part 4: Use gradient checkpointing to fit larger batch

5. Part 5: Apply torch.compile and measure speedup

6. Part 6: Create comprehensive performance comparison

Deliverable: Optimization report showing 2-3x speedup!

42

Key TakeawaysKey Takeaways

1. Always profile before optimizing - measure, don't guess

2. Focus on the critical path - optimize what matters (training loop)

3. Quick wins first - AMP, num_workers, torch.compile are easy

4. Memory vs speed trade-offs - gradient checkpointing, accumulation

5. Benchmark properly - warmup, multiple runs, synchronization

6. Iterative process - profile → optimize → measure → repeat

Remember: A 2x speedup means 2x more experiments, faster iteration, and cheaper costs!

43

Interview QuestionsInterview Questions

Common interview questions on profiling and optimization:

1. "How would you speed up a slow training pipeline?"

Profile first (PyTorch Profiler, nvidia-smi)

Common fixes: increase num_workers, enable AMP, use torch.compile

Check GPU utilization - low % means CPU bottleneck

Increase batch size if memory allows

2. "What is mixed precision training and why use it?"

Use FP16 for forward/backward, FP32 for gradient updates

Benefits: 1.5-2x speedup, half memory usage

PyTorch: torch.cuda.amp.autocast() + GradScaler

Safe for most models; watch for loss scaling issues

44

Additional ResourcesAdditional Resources

Documentation:

PyTorch Profiler: https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

PyTorch Performance Tuning: https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

torch.compile: https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html

Papers:

Mixed Precision Training (Micikevicius et al., 2018)

Flash Attention (Dao et al., 2022)

Gradient Checkpointing (Chen et al., 2016)

Tools:

TensorBoard: https://www.tensorflow.org/tensorboard

Nsight Systems: https://developer.nvidia.com/nsight-systems

h // i h b /b f d/ (li fil)

45

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://www.tensorflow.org/tensorboard
https://developer.nvidia.com/nsight-systems
https://github.com/benfred/py-spy

