
Model Monitoring & ObservabilityModel Monitoring & Observability
Week 14 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The "Silent Failure" ProblemThe "Silent Failure" Problem

Traditional software fails loudly:

>>> items[10] # List has 5 items

IndexError: list index out of range

>>> response = requests.get(bad_url)

>>> response.status_code

500

You know immediately something is wrong.

ML models fail silently:

>>> prediction = model.predict(new_data)

>>> prediction

0.85 # Looks fine!

But the model was trained 6 months ago

The world has changed

The prediction is actually garbage

Problem: The API returns 200 OK , but predictions are wrong.
2

Real-World Monitoring FailuresReal-World Monitoring Failures

Case 1: Amazon's Recruiting AI (2018)

Trained on historical resumes (mostly male)

Model learned gender bias

Penalized resumes containing "women's"

Failure: No monitoring of prediction patterns

Cost: Reputational damage, project scrapped

Case 2: Zillow's Zestimate (2021)

Housing price prediction model

COVID-19 changed market dynamics

Model overpaid for homes

Failure: No drift detection on price distributions

Cost: $880M loss, shut down home-buying business 3

Why ML Models DegradeWhy ML Models Degrade

1. Data drift (X changes)

User demographics shift

New product categories appear

Image quality degrades

Seasonal patterns change

2. Concept drift (P(Y|X) changes)

COVID changes consumer behavior

Regulations change (GDPR affects marketing)

Competitor enters market

Economic recession alters patterns

3. Operational issues

U d i li b k

4

The World Doesn't Stand StillThe World Doesn't Stand Still

Your model is a snapshot of the past. It learned from data collected months ago.

But the world keeps changing - users evolve, markets shift, fraudsters adapt. Without monitoring, you're flying

blind.

Training Now

 │ │

 │ ← Model learned │

 │ this world │

 ▼ ▼

┌──────────┐ ┌──────────┐

│ Users: A │ →→→→→ │ Users: B │ (demographics shifted)

│ Prices: $ │ │ Prices: $$│ (inflation happened)

│ Fraud: X │ │ Fraud: Y │ (fraudsters adapted)

└──────────┘ └──────────┘

Model says "Normal!" but the world has changed...

5

The ML Monitoring StackThe ML Monitoring Stack

What to monitor:

1. Model Performance Metrics

Accuracy, precision, recall, F1

Latency (p50, p95, p99)

Throughput (predictions/sec)

Error rate

2. Data Quality Metrics

Missing values %

Out-of-range values

Cardinality changes

Schema violations

3. Data Drift Metrics
6

Types of Drift: Deep DiveTypes of Drift: Deep Dive

1. Covariate Shift (Data Drift)

 changes, but stays the same

Example: Image classifier trained on daylight photos, deployed on nighttime photos

Detection: Compare input distributions

Fix: Retrain with new data or use domain adaptation

2. Prior Probability Shift (Label Drift)

 changes, but stays the same

Example: Fraud rate increases from 1% to 5%

Detection: Monitor label distribution

Fix: Adjust decision threshold or retrain

3. Concept Drift

h

7

Types of Drift (continued)Types of Drift (continued)

4. Upstream Data Changes

Data pipeline modification

Example: Feature scaling changed from [0,1] to [-1,1]

Detection: Data schema validation

Fix: Fix pipeline or retrain

5. Virtual Drift (False Alarm)

Statistical tests flag drift, but performance unchanged

Example: Slight shift in feature with low importance

Detection: Correlate drift with performance degradation

Fix: Ignore or adjust detection threshold

Drift patterns:

S dd Ab h (d li h)

8

Drift Detection: Statistical TestsDrift Detection: Statistical Tests

For numerical features:

1. Kolmogorov-Smirnov (KS) Test

Measures maximum distance between CDFs

Null hypothesis: Both samples from same distribution

Usage: scipy.stats.ks_2samp(reference, current)

Interpretation: p-value < 0.05 → drift detected

2. Wasserstein Distance (Earth Mover's Distance)

Measures "cost" to transform one distribution into another

Advantage: Interpretable (same units as feature)

Usage: scipy.stats.wasserstein_distance(reference, current)

3. KL Divergence (Kullback-Leibler)
9

Drift Detection: Statistical Tests (2)Drift Detection: Statistical Tests (2)

For categorical features:

1. Chi-Square Test

Tests if category frequencies differ

Example: Distribution of ["mobile", "desktop", "tablet"]

Usage: scipy.stats.chisquare(observed, expected)

2. Population Stability Index (PSI)

Industry standard for monitoring scorecards

Formula:

Interpretation:

PSI < 0.1: No significant change

0.1 < PSI < 0.2: Moderate change

PSI > 0.2: Significant change 10

Drift Detection ExampleDrift Detection Example

import numpy as np

from scipy.stats import ks_2samp

Reference distribution (training data)

reference = np.random.normal(loc=0, scale=1, size=10000)

Current distribution (production, shifted)

current = np.random.normal(loc=0.5, scale=1.2, size=1000)

Perform KS test

statistic, p_value = ks_2samp(reference, current)

print(f"KS Statistic: {statistic:.4f}")

print(f"P-value: {p_value:.4f}")

if p value < 0 05:

Output:

KS Statistic: 0.1234

P-value: 0.0001

 Drift detected!

11

Monitoring Tools EcosystemMonitoring Tools Ecosystem

Open-Source:

Evidently AI: Drift reports, monitoring dashboard

Alibi Detect: Outlier/adversarial/drift detection

Great Expectations: Data validation and profiling

Deepchecks: Testing for ML models & data

WhyLabs (community): Data logging and monitoring

Commercial:

Arize AI: Model observability platform

Fiddler AI: Explainability + monitoring

Arthur AI: Model monitoring + bias detection

WhyLabs (enterprise): Production monitoring

Datadog ML Monitoring: APM + ML metrics 12

Evidently AI: Quick StartEvidently AI: Quick Start

Installation:

pip install evidently

Generate drift report:

from evidently.report import Report

from evidently.metric_preset import DataDriftPreset, TargetDriftPreset

import pandas as pd

Load data

reference_data = pd.read_csv("train.csv")

current_data = pd.read_csv("production_last_week.csv")

Create report

report = Report(metrics=[

 DataDriftPreset(),

 TargetDriftPreset()

])

(

Output: Interactive HTML dashboard with drift analysis per feature.
13

Evidently AI: Test SuitesEvidently AI: Test Suites

Automated testing for data/model:

from evidently.test_suite import TestSuite

from evidently.test_preset import DataDriftTestPreset, DataQualityTestPreset

Define tests

tests = TestSuite(tests=[

 DataDriftTestPreset(),

 DataQualityTestPreset(),

])

tests.run(reference_data=ref_df, current_data=curr_df)

Check if tests passed

result = tests.as_dict()

if result['summary']['failed_tests'] > 0:

 print("

Tests failed!")

Use case: Run in CI/CD pipeline or scheduled job.

14

Alibi Detect: Advanced Drift DetectionAlibi Detect: Advanced Drift Detection

Multivariate drift detection:

from alibi_detect.cd import MMDDrift

import numpy as np

Reference data (training set)

X_ref = np.random.randn(1000, 10) # 1000 samples, 10 features

Initialize detector

drift_detector = MMDDrift(

 X_ref,

 p_val=0.05,

 n_permutations=100

)

Advantages:

Multivariate (considers feature interactions)

Kernel-based (can detect complex shifts)

Online updates possible 15

Model Performance MonitoringModel Performance Monitoring

Metrics to track:

Classification:

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

Per-day metrics

daily_metrics = {

 'accuracy': [],

 'precision': [],

 'recall': [],

 'f1': []

}

for day in range(30):

 y_true = get_labels_for_day(day) # Ground truth (delayed)

 y_pred = get_predictions_for_day(day)

 daily_metrics['accuracy'].append(accuracy_score(y_true, y_pred))

 daily_metrics['precision'].append(precision_score(y_true, y_pred))

daily metrics['recall'] append(recall score(y true y pred))

16

Model Performance Monitoring (2)Model Performance Monitoring (2)

Regression:

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

Monitor residuals

residuals = y_true - y_pred

Track over time

metrics = {

 'mae': mean_absolute_error(y_true, y_pred),

 'rmse': np.sqrt(mean_squared_error(y_true, y_pred)),

 'r2': r2_score(y_true, y_pred),

 'mean_residual': np.mean(residuals),

 'std_residual': np.std(residuals)

}

Detect drift in residuals

if abs(metrics['mean_residual']) > threshold:

Key insight: Monitor residual distribution, not just aggregates.

17

Prediction Distribution MonitoringPrediction Distribution Monitoring

Monitor prediction distribution (even without labels!):

import numpy as np

import matplotlib.pyplot as plt

Collect predictions over time

predictions_week1 = model.predict(X_week1)

predictions_week2 = model.predict(X_week2)

Compare distributions

from scipy.stats import ks_2samp

stat, p_val = ks_2samp(predictions_week1, predictions_week2)

if p_val < 0.05:

 print("

 Prediction distribution changed!")

Visualize

plt.figure(figsize=(10, 4))

plt.hist(predictions_week1, bins=30, alpha=0.5, label='Week 1')

Use case: Detect drift before labels arrive.

18

Delayed Labels ProblemDelayed Labels Problem

Challenge: Ground truth arrives late.

Examples:

Credit default: 30-180 days delay

Medical diagnosis: Days to weeks

Customer churn: 30-90 days

Ad click: Minutes (fast!)

Purchase conversion: Hours to days

Strategies:

1. Use proxy metrics (fast feedback):

Click-through rate (proxy for conversion)

User engagement (proxy for satisfaction)

Prediction confidence (proxy for accuracy)
19

The Feedback Loop Time MachineThe Feedback Loop Time Machine

Labels arrive too late. Loan defaults? You wait 6 months to know if you were right!

By then, thousands of bad decisions. Solution: monitor what you CAN see NOW.

Day 1: Model: "Low risk" │

Day 90: │ │ (still waiting...)

Day 180: │ "Default!" (too late!)

 │

 Model made 1000s more predictions!

Monitor input drift and prediction distributions - signals you can see NOW.

20

Logging ArchitectureLogging Architecture

What to log:

import uuid

from datetime import datetime

import json

def log_prediction(model_id, features, prediction, metadata=None):

 """Log prediction for monitoring."""

 prediction_id = str(uuid.uuid4())

 log_entry = {

 'prediction_id': prediction_id,

 'timestamp': datetime.utcnow().isoformat(),

 'model_id': model_id,

 'model_version': '1.2.3',

 'features': features.tolist(), # Input features

 'prediction': prediction,

 'prediction_probability': model.predict_proba(features)[0].tolist(),

 'metadata': metadata or {}

 }

 # Write to storage (S3, BigQuery, Postgres)

 write_to_storage(log_entry)

 return prediction_id

def log_feedback(prediction_id, actual_label):

21

Logging Best PracticesLogging Best Practices

1. Log asynchronously (don't block predictions):

import threading

def async_log(log_entry):

 thread = threading.Thread(target=write_to_storage, args=(log_entry,))

 thread.start()

Or use queue

from queue import Queue

log_queue = Queue()

def log_worker():

 while True:

 entry = log queue.get()

2. Sample for high-volume systems:

import random

SAMPLE_RATE = 0.1 # Log 10% of predictions 22

Monitoring ArchitectureMonitoring Architecture

ML Monitoring Architecture

Architecture components:

Logger: Asynchronous logging of predictions

Storage: S3/GCS for raw data

ETL: Daily/hourly processing (Airflow, dbt)

Drift Analysis: Evidently AI or custom metrics

Metrics DB: Prometheus or InfluxDB

Dashboard: Grafana or Tableau

Alerts: PagerDuty or Slack integration

23

Prometheus IntegrationPrometheus Integration

Expose ML metrics:

from prometheus_client import Counter, Histogram, Gauge, start_http_server

Define metrics

PREDICTIONS_TOTAL = Counter(

 'ml_predictions_total',

 'Total number of predictions',

 ['model_version', 'endpoint']

)

PREDICTION_LATENCY = Histogram(

 'ml_prediction_latency_seconds',

 'Prediction latency in seconds'

)

PREDICTION_SCORE = Histogram(

 'ml_prediction_score',

 'Distribution of prediction scores',

 buckets=[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

)

MODEL ACCURACY Gauge(

24

Prometheus Integration (2)Prometheus Integration (2)

Instrument prediction function:

import time

@PREDICTION_LATENCY.time()

def predict(features):

 # Make prediction

 prediction = model.predict(features)

 score = model.predict_proba(features)[0, 1]

 # Record metrics

 PREDICTIONS_TOTAL.labels(

 model_version='v1.2.3',

 endpoint='/predict'

).inc()

 PREDICTION_SCORE.observe(score)

 return prediction, score

25

Grafana DashboardsGrafana Dashboards

Prometheus queries (PromQL):

1. Prediction rate:

rate(ml_predictions_total[5m])

2. P95 latency:

histogram_quantile(0.95,

 rate(ml_prediction_latency_seconds_bucket[5m])

3. Accuracy over time:

ml_model_accuracy

4. Prediction score distribution:

rate(ml_prediction_score_bucket[5m])

Grafana: Connect to Prometheus, create dashboards with these queries.
26

Alerting RulesAlerting Rules

Prometheus alerting rules (alerts.yml):

groups:

- name: ml_model_alerts

 interval: 30s

 rules:

 - alert: ModelAccuracyLow

 expr: ml_model_accuracy < 0.85

 for: 10m

 labels:

 severity: warning

 annotations:

 summary: "Model accuracy below threshold"

 description: "Accuracy is {{ $value }}, threshold is 0.85"

 - alert: HighPredictionLatency

 expr: histogram_quantile(0.95, rate(ml_prediction_latency_seconds_bucket[5m])) > 0.5

 for: 5m

27

Alerting IntegrationAlerting Integration

Send alerts to Slack:

import requests

import json

def send_slack_alert(message):

 webhook_url = os.getenv("SLACK_WEBHOOK_URL")

 payload = {

 "text": f"

 ML Model Alert: {message}",

 "channel": "#ml-monitoring",

 "username": "ML Monitor Bot"

 }

 response = requests.post(

 webhook_url,

 data=json.dumps(payload),

 headers={'Content-Type': 'application/json'}

)

 return response.status_code == 200

28

A/B Testing for ModelsA/B Testing for Models

Shadow deployment (run new model alongside old):

def predict_with_shadow(features):

 # Production model (served to user)

 prediction_v1 = model_v1.predict(features)

 # Shadow model (logged but not served)

 prediction_v2 = model_v2.predict(features)

 # Log both for comparison

 log_predictions(

 features=features,

A/B test (split traffic):

def predict_with_ab_test(features, user_id):

 # Deterministic assignment (consistent per user)

 variant = 'A' if hash(user_id) % 2 == 0 else 'B'

 if variant == 'A':

 prediction = model_a.predict(features)

 else:

29

Model Retraining TriggersModel Retraining Triggers

When to retrain:

1. Performance-based:

if current_f1 < baseline_f1 * 0.95: # 5% degradation

trigger retraining()

2. Drift-based:

if psi_score > 0.2: # Significant drift

trigger retraining()

3. Time-based:

if days_since_last_training > 30:

trigger retraining()

4. Data-based:

if num_new_labeled_samples > 10000:

trigger retraining()

Best practice: Combine multiple triggers with OR logic.
30

Continuous Training PipelineContinuous Training Pipeline

from airflow import DAG

from airflow.operators.python_operator import PythonOperator

from datetime import datetime, timedelta

default_args = {

 'owner': 'ml-team',

 'depends_on_past': False,

 'start_date': datetime(2024, 1, 1),

 'retries': 1,

}

dag = DAG(

 'model_monitoring_and_retraining',

 default_args=default_args,

 schedule_interval='@daily',

)

def check_drift():

 # Run drift analysis

 drift_detected = analyze_drift()

 if drift_detected:

 return 'retrain_model'

 else:

 return 'skip_retraining'

def retrain_model():

 # Retrain model with new data

 new_model = train(get_recent_data())

 # Evaluate

 if evaluate(new_model) > current_model_score:

 deploy(new_model)

check_drift_task = PythonOperator(

 task_id='check_drift',

31

Model Versioning and RollbackModel Versioning and Rollback

Track model versions:

import mlflow

Log model

with mlflow.start_run():

 mlflow.log_params(hyperparameters)

 mlflow.log_metrics({"accuracy": accuracy, "f1": f1})

 mlflow.sklearn.log_model(model, "model")

 # Tag

 mlflow.set_tag("stage", "production")

mlflow set tag("deployed at" datetime now() isoformat())

Rollback strategy:

def rollback_to_previous_version():

 # Load previous model

 previous_model = load_model_version('v1.2.2')

 # Deploy

 deploy_model(previous_model)
32

Feature Store MonitoringFeature Store Monitoring

Monitor feature statistics:

from feast import FeatureStore

store = FeatureStore(repo_path=".")

Monitor feature freshness

def check_feature_freshness():

 features = store.get_online_features(

 features=['driver:avg_rating', 'driver:completed_trips'],

 entity_rows=[{'driver_id': 123}]

)

 last_updated = features.metadata.feature_timestamps['driver:avg_rating']

 age_hours = (datetime.now() - last_updated).total_seconds() / 3600

 if age_hours > 24:

 send_alert(f"Feature driver:avg_rating is {age_hours:.1f} hours old!")

Monitor feature distributions

def monitor_feature_distribution(feature_name):

 values = get_feature_values_last_24h(feature_name)

 ref_mean = REFERENCE_STATS[feature_name]['mean']

 ref_std = REFERENCE_STATS[feature_name]['std']

33

Bias and Fairness MonitoringBias and Fairness Monitoring

Monitor predictions across demographic groups:

from fairlearn.metrics import MetricFrame, selection_rate, false_positive_rate

Compute metrics per group

metric_frame = MetricFrame(

 metrics={

 'accuracy': accuracy_score,

 'fpr': false_positive_rate,

 'selection_rate': selection_rate

 },

 y_true=y_true,

 y_pred=y_pred,

 sensitive_features=df['gender'] # Protected attribute

)

print(metric_frame.by_group)

Alert if disparity

accuracy_ratio = (

Track over time: Log disparities daily, visualize trends.

34

Explainability MonitoringExplainability Monitoring

Monitor feature importance drift:

from sklearn.inspection import permutation_importance

import numpy as np

Compute importance on reference data

ref_importance = permutation_importance(

 model, X_ref, y_ref, n_repeats=10

).importances_mean

Compute importance on current data

curr_importance = permutation_importance(

model X curr y curr n repeats=10

SHAP values monitoring:

import shap

Track mean SHAP values over time

explainer = shap.Explainer(model)

shap_values = explainer(X_prod)

mean shap shap values values mean(axis 0)

35

Monitoring Dashboard DesignMonitoring Dashboard Design

Key dashboard sections:

1. Executive Summary

Model accuracy (current vs baseline)

Predictions served today

Active alerts

Drift status (✓ /

/

)

2. Model Performance

Accuracy/F1 over time (line chart)

Confusion matrix (heatmap)

Error rate by category

36

Monitoring Dashboard Design (2)Monitoring Dashboard Design (2)

5. System Health

Prediction latency (P50, P95, P99)

Throughput (predictions/sec)

Error rate (4xx, 5xx)

CPU/Memory usage

6. Prediction Analysis

Prediction distribution

Confidence score histogram

Prediction volume by hour/day

7. Business Metrics

Conversion rate (if applicable)

R i

37

Incident Response PlaybookIncident Response Playbook

When alert fires:

1. Assess severity (5 min)

Critical: Model down, severe accuracy drop (>20%)

High: Moderate accuracy drop (10-20%), high latency

Medium: Data drift detected, minor accuracy drop (<10%)

Low: Feature freshness issues

2. Initial investigation (15 min)

Check recent deployments

Review upstream data pipelines

Examine input distribution changes

Check system health (CPU, memory, errors)

3. Mitigation (30 min)
38

Best Practices SummaryBest Practices Summary

1. Start simple

Begin with basic metrics (accuracy, latency)

Add complexity as needed

2. Monitor early and often

Start monitoring from day 1 of deployment

Don't wait for problems

3. Automate everything

Automated drift detection

Automated retraining pipelines

Automated alerts

4. Combine multiple signals
39

Common PitfallsCommon Pitfalls

1. Alert fatigue

Too many false positives → people ignore alerts

Fix: Tune thresholds, use multi-signal alerts

2. Over-monitoring

Monitoring everything → hard to find signal in noise

Fix: Focus on business-critical metrics

3. Ignoring data quality

Monitoring only model performance → miss root cause

Fix: Monitor data quality upstream

4. No baseline

C 't d t t d ift ith t f

40

Lab PreviewLab Preview

Today's lab:

1. Part 1: Train baseline model on "clean" data (30 min)

2. Part 2: Simulate production drift (gradual shift) (20 min)

3. Part 3: Implement drift detection with Evidently (40 min)

4. Part 4: Create monitoring dashboard (40 min)

5. Part 5: Set up automated alerts (30 min)

6. Part 6: Analyze performance degradation (30 min)

Dataset: Bike sharing data (weather features → demand)

Deliverable:

Drift detection reports

Monitoring dashboard

Alert system
41

Key TakeawaysKey Takeaways

1. ML models degrade silently - monitoring is essential

2. Monitor multiple dimensions - performance, drift, data quality, system health

3. Use statistical tests - KS test, PSI, Wasserstein distance

4. Log everything - inputs, outputs, metadata, feedback

5. Automate detection and response - don't rely on manual checks

6. Start simple, iterate - basic monitoring > no monitoring

7. Combine monitoring with CI/CD - continuous training pipelines

Remember: "You can't improve what you don't measure" - Peter Drucker

42

Interview QuestionsInterview Questions

Common interview questions on model monitoring:

1. "How do you detect when a deployed model needs retraining?"

Monitor prediction distribution shifts (data drift)

Track accuracy on labeled samples (performance drift)

Statistical tests: KS test, PSI score

Business metrics: conversion rate, user feedback

Combine: performance drop + drift = retrain trigger

2. "What is data drift and how would you detect it?"

Data drift: Input distribution changes over time

Causes: Seasonality, user behavior changes, upstream data changes

Detection: Compare feature distributions (reference vs current)

Tools: Evidently AI, Alibi Detect, custom KS tests

Act on it: Alert→ investigate→ retrain if needed

43

Additional ResourcesAdditional Resources

Libraries and Tools:

Evidently AI: https://evidentlyai.com/

Alibi Detect: https://github.com/SeldonIO/alibi-detect

Great Expectations: https://greatexpectations.io/

Deepchecks: https://deepchecks.com/

Prometheus: https://prometheus.io/

Grafana: https://grafana.com/

Reading:

"Machine Learning Monitoring" (Chip Huyen): https://huyenchip.com/

"Monitoring Machine Learning Models in Production" (Google Cloud)

"Made With ML - Monitoring": https://madewithml.com/courses/mlops/monitoring/

"The ML Test Score" (Breck et al., 2017) 44

https://evidentlyai.com/
https://github.com/SeldonIO/alibi-detect
https://greatexpectations.io/
https://deepchecks.com/
https://prometheus.io/
https://grafana.com/
https://huyenchip.com/
https://madewithml.com/courses/mlops/monitoring/

Questions?Questions?

