Model Monitoring & Observability

Week 14 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The "Silent Failure" Problem

Traditional software fails loudly:

>>> items[10]
IndexError: list index out of range

>>> response = requests.get(bad url)
>>> response.status code
500

You know immediately something is wrong.
ML models fail silently:
>>> prediction = model.predict(new data)

>>> prediction
0.85

Problem: The APl returns 200 0K , but predictions are wrong.

Real-World Monitoring Failures

Case 1: Amazon's Recruiting Al (2018)

Trained on historical resumes (mostly male)

Model learned gender bias

Penalized resumes containing "women's"

Failure: No monitoring of prediction patterns

Cost: Reputational damage, project scrapped

Case 2: Zillow's Zestimate (2021)

Housing price prediction model

COVID-19 changed market dynamics

Model overpaid for homes

Failure: No drift detection on price distributions

Cost: $880M loss, shut down home-buying business

Why ML Models Degrade

1. Data drift (X changes)

User demographics shift

New product categories appear

Image quality degrades

Seasonal patterns change

2. Concept drift (P(Y|X) changes)

COVID changes consumer behavior

Regulations change (GDPR affects marketing)

Competitor enters market

Economic recession alters patterns

3. Operational issues

The World Doesn't Stand Still

Your model is a shapshot of the past. It learned from data collected months ago.

But the world keeps changing - users evolve, markets shift, fraudsters adapt. Without monitoring, you're flying
blind.

Training Now

0
|
« Model learned |
this world |

v

|
|
v

| | | |
| Users: A | ----- | Users: B | (demographics shifted)
| Prices: $ | | Prices: $$| (inflation happened)

| Fraud: X | | Fraud: Y | (fraudsters adapted)
| | | |

Model says "Normal!" but the world has changed...

The ML Monitoring Stack

What to monitor:

1. Model Performance Metrics

Accuracy, precision, recall, F1

Latency (p50, p95, p99)

Throughput (predictions/sec)

Error rate

2. Data Quality Metrics

Missing values %

Out-of-range values

Cardinality changes

Schema violations

3. Data Drift Metrics

Types of Drift: Deep Dive

1. Covariate Shift (Data Drift)

P(X) changes, but P(Y|X) stays the same

Example: Image classifier trained on daylight photos, deployed on nighttime photos

Detection: Compare input distributions

Fix: Retrain with new data or use domain adaptation

2. Prior Probability Shift (Label Drift)

P(Y) changes, but P(X|Y) stays the same

Example: Fraud rate increases from 1% to 5%

Detection: Monitor label distribution

Fix: Adjust decision threshold or retrain

3. Concept Drift

—— f e g | =\

Types of Drift (continued)

4. Upstream Data Changes

Data pipeline modification

Example: Feature scaling changed from [0,1] to [-1,1]

Detection: Data schema validation

Fix: Fix pipeline or retrain

5. Virtual Drift (False Alarm)

Statistical tests flag drift, but performance unchanged

Example: Slight shift in feature with low importance

Detection: Correlate drift with performance degradation

Fix: Ignore or adjust detection threshold

Drift patterns:

Drift Detection: Statistical Tests

For numerical features:

1. Kolmogorov-Smirnov (KS) Test

Measures maximum distance between CDFs

Null hypothesis: Both samples from same distribution

Usage: scipy.stats.ks 2samp(reference, current)

Interpretation: p-value < 0.05 - drift detected

2. Wasserstein Distance (Earth Mover's Distance)

e Measures "cost" to transform one distribution into another
e Advantage: Interpretable (same units as feature)

e Usage: scipy.stats.wasserstein distance(reference, current)

3. KL Divergence (Kullback-Leibler)

Drift Detection: Statistical Tests (2)

For categorical features:

1. Chi-Square Test

o Tests if category frequencies differ
o Example: Distribution of ["mobile", "desktop", "tablet"]

e Usage: scipy.stats.chisquare(observed, expected)

2. Population Stability Index (PSI)

* Industry standard for monitoring scorecards
e Formula: PSI =) (P; — Q;) x In(F;/Q;)
e Interpretation:

o PSI < 0.1: No significant change

o 0.1 < PSI < 0.2: Moderate change

o PSI > 0.2: Significant change 10

Drift Detection Example

numpy np
scipy.stats ks 2samp

reference = np.random.normal(loc=0, scale=1l, size=10000)
current = np.random.normal(loc=0.5, scale=1.2, size=1000)

statistic, p value = ks 2samp(reference, current)

print(f"KS Statistic: {statistic:.4f}")
print(f"P-value: {p _value:.4f}")

KS Statistic: 0.1234
P-value: 0.0001

1}
Drift detected!

Monitoring Tools Ecosystem

Open-Source:

Evidently Al: Drift reports, monitoring dashboard

Alibi Detect: Outlier/adversarial/drift detection

Great Expectations: Data validation and profiling

Deepchecks: Testing for ML models & data

WhyLabs (community): Data logging and monitoring

Commercial:

Arize Al: Model observability platform

Fiddler Al: Explainability + monitoring

Arthur Al: Model monitoring + bias detection

WhyLabs (enterprise): Production monitoring

Datadog ML Monitoring: APM + ML metrics 12

Evidently Al: Quick Start

Installation:

pip install evidently

Generate drift report:

evidently.report Report
evidently.metric preset DataDriftPreset, TargetDriftPreset

SERLEN pd

reference data = pd.read csv("train.csv")
current _data = pd.read csv("production last week.csv")

report = Report(metrics=[
DataDriftPreset(),
TargetDriftPreset()

1)

Output: Interactive HTML dashboard with drift analysis per feature.

Evidently Al: Test Suites

Automated testing for data/model:

evidently.test suite TestSuite
evidently.test preset DataDriftTestPreset, DataQualityTestPreset

tests = TestSuite(tests=][
DataDriftTestPreset(),
DataQualityTestPreset(),
1)

tests.run(reference data=ref df, current data=curr df)

result = tests.as dict()

result['summary']['failed tests'] > 0:

print("
1Y

Use case: Run in CI/CD pipeline or scheduled job.

Alibi Detect: Advanced Drift Detection

Multivariate drift detection:

alibi detect.cd MMDDrift
numpy np

X _ref = np.random.randn (1000, 10)

drift detector = MMDDrift(
X ref,
p _val=0.05,
n_permutations=100

Advantages:

e Multivariate (considers feature interactions)

» Kernel-based (can detect complex shifts)

* Online updates possible

Model Performance Monitoring

Metrics to track:

Classification:

sklearn.metrics accuracy score, precision score, recall score, fl score

daily metrics = {
‘accuracy': [1],
'precision': [],
'recall': [],
'fl': []

day range(30) :
y true = get labels for day(day)
y pred = get predictions for day(day)

daily metrics['accuracy'].append(accuracy score(y true, y pred))
daily metrics['precision'].append(precision score(y true, y pred))

Model Performance Monitoring (2)

Regression:

sklearn.metrics mean_absolute error, mean squared error, r2 score
residuals =y true - y pred

metrics = {

mae': mean absolute error(y true, y pred),

‘rmse': np.sqrt(mean squared error(y true, y pred)),
‘r2': r2 score(y true, y pred),

‘mean _residual': np.mean(residuals),

'std residual': np.std(residuals)

abs(metrics['mean residual']) > threshold:

Key insight: Monitor residual distribution, not just aggregates.

Prediction Distribution Monitoring

Monitor prediction distribution (even without labels!):

numpy np
matplotlib.pyplot plt

predictions weekl = model.predict(X weekl)
predictions week2 model.predict(X week2)

scipy.stats ks 2samp
stat, p val = ks 2samp(predictions weekl, predictions week2)

p val < 0.05:

print ("
o

Prediction distribution changed!")

plt.figure(figsize=(10, 4))
plt.hist(predictions weekl, bins=30, alpha=0.5, label='Week 1')

Use case: Detect drift before labels arrive.

Delayed Labels Problem

Challenge: Ground truth arrives late.

Examples:

Credit default: 30-180 days delay

Medical diagnosis: Days to weeks

Customer churn: 30-90 days

Ad click: Minutes (fast!)

Purchase conversion: Hours to days

Strategies:

1. Use proxy metrics (fast feedback):

» Click-through rate (proxy for conversion)
» User engagement (proxy for satisfaction)

» Prediction confidence (proxy for accuracy)

19

The Feedback Loop Time Machine

Labels arrive too late. Loan defaults? You wait 6 months to know if you were right!

By then, thousands of bad decisions. Solution: monitor what you CAN see NOW.

Day 1: Model: "Low risk" |
Day 90: | (still waiting...)
Day 180: "Default!" (too late!)

Model made 1000s more predictions!

Monitor input drift and prediction distributions - signals you can see NOW.

20

Logging Architecture

What to log:

uuid
datetime datetime
json

log prediction(model id, features, prediction, metadata=
"""lLog prediction for monitoring."""
prediction id = str(uuid.uuid4())

log entry = {
‘prediction id': prediction id,
"timestamp': datetime.utcnow().isoformat(),
'model id': model id,
'model version': '1.2.3',
'features': features.tolist(),
'prediction': prediction,
'prediction probability': model.predict proba(features)[0].tolist(),
'metadata': metadata {}

write to storage(log entry)
prediction id

log feedback(prediction id, actual label):

Logging Best Practices

1. Log asynchronously (don't block predictions):

threading
async_log(log entry):

thread = threading.Thread(target=write to storage, args=(log entry,))
thread.start()

queue Queue
log queue = Queue()
log worker():

entrv = loa aqueue.get()

2. Sample for high-volume systems:

random

SAMPLE RATE = 0.1 D2

Monitoring Architecture

ML Monitoring Architecture

Architecture components:

e Logger: Asynchronous logging of predictions
e Storage: S3/GCS for raw data

e ETL: Daily/hourly processing (Airflow, dbt)

e Drift Analysis: Evidently Al or custom metrics
e Metrics DB: Prometheus or InfluxDB

e Dashboard: Grafana or Tableau

e Alerts: PagerDuty or Slack integration

23

Prometheus Integration

Expose ML metrics:

prometheus client Counter, Histogram, Gauge, start http server

PREDICTIONS TOTAL = Counter(
‘ml_predictions total',
'Total number of predictions',
['model version', 'endpoint']

PREDICTION LATENCY = Histogram(
'ml_prediction latency seconds',
'Prediction latency in seconds'

PREDICTION SCORE = Histogram(
'ml_prediction score',
‘Distribution of prediction scores',
buckets=[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Prometheus Integration (2)

Instrument prediction function:

time

@PREDICTION LATENCY.time()
predict(features):

prediction = model.predict(features)

score = model.predict proba(features)[0, 1]

PREDICTIONS TOTAL.labels(
model version='v1.2.3"',
endpoint='/predict’

) .inc()

PREDICTION SCORE.observe(score)

prediction, score

Grafana Dashboards

Prometheus queries (PromQL):

1. Prediction rate:

rate(ml predictions total[5m])

2. P95 latency:

histogram quantile(0.95,

rate(ml prediction latency seconds bucket[5m])

3. Accuracy over time:

ml model accuracy

4. Prediction score distribution:

rate(ml prediction score bucket[5m])

Grafana: Connect to Prometheus, create dashboards with these queries.

Alerting Rules

Prometheus alerting rules (alerts.yml):

groups:
name: ml model alerts
interval: 30s
rules:
alert: ModelAccuracylLow
expr: ml model accuracy < 0.85
for: 10m
labels:
severity: warning
annotations:
summary: "Model accuracy below threshold"
description: "Accuracy is {{ $value }}, threshold is 0.85"

alert: HighPredictionLatency
expr: histogram quantile(0.95, rate(ml prediction latency seconds bucket[5m])) > 0.5
for: 5m

Alerting Integration

Send alerts to Slack:

requests
json

send slack alert(message):
webhook url = os.getenv("SLACK WEBHOOK URL")

payload = {
"text": f"
&
ML Model Alert: {message}",

"channel": "#ml-monitoring",
“username": "ML Monitor Bot"

response = requests.post(
webhook url,
data=json.dumps(payload),
headers={'Content-Type': 'application/json'}

response.status code == 200

A/B Testing for Models

Shadow deployment (run new model alongside old):

predict with shadow(features):

prediction vl = model vl.predict(features)

prediction v2 = model v2.predict(features)

log predictions(
features=features,

A/B test (split traffic):

predict with ab test(features, user id):
variant = 'A' hash(user id) % 2 == ‘B!

variant == 'A':
prediction = model a.predict(features) PO

Model Retraining Triggers

When to retrain:

1. Performance-based:

current fl < baseline fl * 0.95:

2. Drift-based:

psi score > 0.2:

e G P S T RGPV A |

3. Time-based:

days since last training > 30:

L RVt T B -V W A

4. Data-based:

num_new labeled samples > 10000:

Best practice: Combine multiple triggers with OR logic.

Continuous Training Pipeline

airflow DAG
airflow.operators.python operator PythonOperator
datetime datetime, timedelta

default_args = {
‘owner': 'ml-team'
'depends on past': 5
'start date': datetime(2024, 1, 1)
'retries': 1,

= DAG(

‘model monitoring and retraining',
default args=default _args,
schedule_interval='@daily',

check drift():
drift detected = analyze drift()
drift detected:

'retrain_model'

'skip_retraining'

retrain_model():

new model = train(get recent data())

evaluate(new model) > current model score:
deploy(new_model)

check drift task = PythonOperator(
task id='check drift',

Model Versioning and Rollback

Track model versions:

mlflow

mlflow.start run():

mlflow.log params(hyperparameters)

mlflow.log metrics({"accuracy": accuracy, "fl1": fl})
mlflow.sklearn.log model(model, "model")

mlflow.set tag("stage", "production")

Rollback strategy:

rollback to previous version():

previous model = load model version('v1.2.2')

deploy model(previous model)

Feature Store Monitoring

Monitor feature statistics:

feast FeatureStore

store = FeatureStore(repo path=".")

check feature freshness():

features = store.get online features(
features=['driver:avg rating', 'driver:completed trips'],
entity rows=[{'driver id': 123}]

last updated = features.metadata.feature timestamps['driver:avg rating']

age hours = (datetime.now() - last updated).total seconds() / 3600

age hours > 24:
send alert(f"Feature driver:avg rating is {age hours:.1f} hours old!")

monitor feature distribution(feature name):
values = get feature values last 24h(feature name)

ref mean = REFERENCE STATS[feature name]['mean']
ref std = REFERENCE STATS[feature name]['std']

Bias and Fairness Monitoring

Monitor predictions across demographic groups:

fairlearn.metrics MetricFrame, selection rate, false positive rate

metric_ frame = MetricFrame(

metrics={
‘accuracy': accuracy score,
‘fpr': false positive rate,
‘selection rate': selection

I

y true=y true,

y pred=y pred,

sensitive features=df['gender']

print(metric_frame.by group)

accuracy ratio = (

Track over time: Log disparities daily, visualize trends.

Explainability Monitoring
Monitor feature importance drift:

sklearn.inspection permutation importance
numpy np

ref importance = permutation importance(
model, X ref, y ref, n repeats=10
) .importances mean

curr_importance permutation importance(

SHAP values monitoring:

shap

explainer = shap.Explainer(model)
shap values = explainer(X prod)

Monitoring Dashboard Design

Key dashboard sections:

1. Executive Summary

Model accuracy (current vs baseline)

Predictions served today

Active alerts

Drift status (v /
!

/
X
)

2. Model Performance

» Accuracy/F1 over time (line chart)

» Confusion matrix (heatmap) 36

a EveAnr ratn hyr ~atAanAry 7

Monitoring Dashboard Design (2)

5. System Health

Prediction latency (P50, P95, P99)

Throughput (predictions/sec)

Error rate (4xx, 5xx)

CPU/Memory usage

6. Prediction Analysis

e Prediction distribution
e Confidence score histogram

» Prediction volume by hour/day

7. Business Metrics

» Conversion rate (if applicable) 37

Incident Response Playbook

When alert fires:

1. Assess severity (5 min)

Critical: Model down, severe accuracy drop (>20%)

High: Moderate accuracy drop (10-20%), high latency

Medium: Data drift detected, minor accuracy drop (<10%)

Low: Feature freshness issues

2. Initial investigation (15 min)

Check recent deployments

Review upstream data pipelines

Examine input distribution changes

Check system health (CPU, memory, errors)

38
3. Mitigation (30 min)

Best Practices Summary

1. Start simple

* Begin with basic metrics (accuracy, latency)

e Add complexity as needed

2. Monitor early and often

e Start monitoring from day 1 of deployment

e Don't wait for problems

3. Automate everything

e Automated drift detection
e Automated retraining pipelines

 Automated alerts

4. Combine multiple signals 39

Common Pitfalls

1. Alert fatigue

e Too many false positives — people ignore alerts

e Fix: Tune thresholds, use multi-signal alerts

2. Over-monitoring

e Monitoring everything - hard to find signal in noise

e Fix: Focus on business-critical metrics

3. Ignoring data quality

e Monitoring only model performance - miss root cause
e Fix: Monitor data quality upstream

4. No baseline

40

Lab Preview

Today's lab:

1. Part 1: Train baseline model on "clean" data (30 min)

2. Part 2: Simulate production drift (gradual shift) (20 min)
3. Part 3: Implement drift detection with Evidently (40 min)
4. Part 4: Create monitoring dashboard (40 min)

5. Part 5: Set up automated alerts (30 min)

6. Part 6: Analyze performance degradation (30 min)

Dataset: Bike sharing data (weather features — demand)

Deliverable:

» Drift detection reports
* Monitoring dashboard

e Alert system

41

LCOAELCENWEVE

1
2
3
4
S
6
/

. ML models degrade silently - monitoring is essential

. Monitor multiple dimensions - performance, drift, data quality, system health
. Use statistical tests - KS test, PSI, Wasserstein distance

. Log everything - inputs, outputs, metadata, feedback

. Automate detection and response - don't rely on manual checks

. Start simple, iterate - basic monitoring > no monitoring

. Combine monitoring with CI/CD - continuous training pipelines

Remember: "You can't improve what you don't measure" - Peter Drucker

42

Interview Questions

Common interview questions on model monitoring:

1. "How do you detect when a deployed model needs retraining?"

o Monitor prediction distribution shifts (data drift)

o Track accuracy on labeled samples (performance drift)
o Statistical tests: KS test, PSI score

o Business metrics: conversion rate, user feedback

o Combine: performance drop + drift = retrain trigger
2. "What is data drift and how would you detect it?"

o Data drift: Input distribution changes over time

o Causes: Seasonality, user behavior changes, upstream data changes

o

Detection: Compare feature distributions (reference vs current)

o

Tools: Evidently Al, Alibi Detect, custom KS tests 43

Act on it Alart . inveactidate . retrain if necaded

O

Additional Resources

Libraries and Tools:

Evidently Al: https://evidentlyai.com/

Alibi Detect: https://github.com/SeldonlO/alibi-detect

Great Expectations: https://greatexpectations.io/

Deepchecks: https://deepchecks.com/

Prometheus: https://prometheus.io/

Grafana: https://grafana.com/

Reading:

e "Machine Learning Monitoring" (Chip Huyen): https://huyenchip.com/
» "Monitoring Machine Learning Models in Production" (Google Cloud)
e "Made With ML - Monitoring": https://madewithml.com/courses/mlops/monitoring/

e "The ML Test Score" (Breck et al., 2017) 44

https://evidentlyai.com/
https://github.com/SeldonIO/alibi-detect
https://greatexpectations.io/
https://deepchecks.com/
https://prometheus.io/
https://grafana.com/
https://huyenchip.com/
https://madewithml.com/courses/mlops/monitoring/

Questions?

