Course Summary & Future Trends
Week 15 - CS 203: Software Tools and Techniques for Al

Prof. Nipun Batra
IIT Gandhinagar

The Journey We've Taken

Part 1: The Data Foundation (Weeks 1-5)

Week 1: Data Collection (Web Scraping, HTTP APIs)

Week 2: Data Validation (Pydantic, Schema Enforcement)

Week 3: Data Labeling (Label Studio, Annotation Workflows)

Week 4: Active Learning (Smart Data Selection)

Week 5: Data Augmentation (Synthetic Data Generation)
Part 2: Model Engineering (Weeks 6-8)
* Week 6: LLM APIs (OpenAl, Anthropic, Prompt Engineering)

* Week 7: Model Development (Training, Fine-tuning, PEFT/LoRA)
» Week 8: Reproducibility (Docker, MLflow, DVC)

The Journey (Continued)

Part 3: Deployment & MLOps (Weeks 9-14)

Week 9: Interactive Demos (Streamlit, Gradio)

Week 10: HTTP APIs (FastAPI, REST Principles)
Week 11: Git & CI/CD (GitHub Actions, Automated Testing)

Week 12: Edge Deployment (Quantization, Pruning, ONNX)

Week 13: Profiling & Optimization (Performance Tuning)

Week 14: Model Monitoring (Drift Detection, Observability)

The Full Stack Al Engineer

You now have the toolkit to build end-to-end systems:

© 00 N o o B~ W N P

. Scrape data from the web (requests, BeautifulSoup)
. Validate it rigorously (Pydantic schemas)

. Label efficiently (Label Studio, Active Learning)

. Train a model (PyTorch, fine-tune LLMs with LoRA)

. Package it reproducibly (Docker, requirements.txt)

. Serve it via APIs (FastAPI, async endpoints)

. Deploy with CI/CD (GitHub Actions, automated tests)
. Optimize for production (quantization, profiling)

. Monitor for drift (Evidently Al, Prometheus)

Week-by-Week Key Lessons

Week 1 (Data Collection)

e Lesson: Good data beats fancy algorithms
 Tool: requests , BeautifulSoup, Selenium

e Pitfall: Violating robots.txt, missing rate limiting

Week 2 (Data Validation)

e Lesson: Validate early, fail fast
e Tool: Pydantic for schema enforcement

 Pitfall: Trusting external data without validation

Week 3 (Data Labeling)

e Lesson: Quality > Quantity for labels

e Tool: Label Studio for annotation 5

Week-by-Week Key Lessons (2)

Week 4 (Active Learning)

e Lesson: Let the model tell you what to label next
e Tool: Uncertainty sampling, query strategies

 Pitfall: Using random sampling when data is expensive

Week 5 (Data Augmentation)

* Lesson: Synthetic data can fill gaps in real data
e Tool: albumentations, TextAttack, nlpaug

 Pitfall: Unrealistic augmentations that hurt generalization

Week 6 (LLM APIs)

e Lesson: Start with APIs before self-hosting LLMs
e Tool: OpenAl API, Anthropic Claude API 6

Week-by-Week Key Lessons (3)

Week 7 (Model Development)

e Lesson: Start with baselines, iterate systematically
e Tool: PyTorch, Optuna for hyperparameter tuning

 Pitfall: Jumping to complex models without baselines
Week 8 (Reproducibility)
e Lesson: "Works on my machine" is not acceptable

e Tool: Docker, MLflow, DVC for versioning

 Pitfall: Not pinning dependency versions

Week 9 (Interactive Demos)

* Lesson: Demos accelerate feedback loops

e Tool: Streamlit for dashboards, Gradio for quick Uls 7

Week-by-Week Key Lessons (4)

Week 10 (HTTP APIs)

 Lesson: REST APIs are the universal interface
e Tool: FastAPI with automatic OpenAPI docs

e Pitfall: Missing input validation and error handling

Week 11 (Git & CI/CD)

e Lesson: Automate everything that can be automated
e Tool: GitHub Actions for CI/CD pipelines
 Pitfall: Not testing before deploying

Week 12 (Edge Deployment)

* Lesson: Optimization is required for resource-constrained devices

e Tool: ONNX Runtime, quantization, pruning 8

Week-by-Week Key Lessons (5)

Week 13 (Profiling & Optimization)

e Lesson: Measure first, optimize second
e Tool: PyTorch Profiler, cProfile, line_profiler

 Pitfall: Premature optimization

Week 14 (Model Monitoring)

e Lesson: Models degrade over time in production
e Tool: Evidently Al, Prometheus, Grafana

 Pitfall: No alerts for drift or performance degradation

Common Pitfalls Across the Course

Data Issues:

* Not validating data schemas early
e Collecting biased or unrepresentative data

e Ignoring class imbalance

Model Issues:

* No baseline comparison
e Overfitting on small datasets

* Not using cross-validation

Engineering Issues:

e Hardcoding configurations

* Not using version control for data 10

Integration: How Weeks Connect

Data Pipeline (Weeks 1-5):
Raw Web Data - Validation - Labeling - Active Learning — Augmentation - Clean Dataset

Model Pipeline (Weeks 6-8):
Clean Dataset - LLM API / Training - Experiment Tracking — Reproducible Model

Deployment Pipeline (Weeks 9-14):
Model - Demo (Streamlit) — API (FastAPI) -~ CI/CD - Optimization — Monitoring

Key Insight: Each week builds on previous weeks. You need ALL pieces for production ML.

1

Real-World Case Study: Image Classification Service

Scenario: Build a production image classifier for plant disease detection.

Week 1-2: Scrape plant images, validate image formats/sizes
Week 3-4: Label diseases, use active learning for rare classes
Week 5: Augment with rotations, crops (realistic transformations)
Week 7: Fine-tune ResNet-50 with transfer learning

Week 8: Package in Docker, track experiments with MLflow
Week 9: Build Streamlit demo for farmers

Week 10: Create FastAPI endpoint for mobile app

Week 11: Set up CI/CD to auto-test on new data

Week 12: Quantize model to INT8 for mobile deployment
Week 13: Profile and optimize inference latency

Week 14: Monitor for drift as seasons change

12

Real-World Case Study: Text Classification API

Scenario: Build sentiment analysis APl for customer reviews.

Week 1-2: Scrape reviews, validate JSON schemas

Week 3-4: Label sentiment, use uncertainty sampling

Week 5: Augment with back-translation, synonym replacement
Week 6: Start with OpenAl API for prototyping

Week 7: Fine-tune DistilBERT with LoRA for cost savings

Week 8: Containerize with Docker, track with W&B

Week 9: Build Gradio demo for stakeholders

Week 10: Deploy FastAPI with rate limiting

Week 11: Automate testing and deployment

Week 12: Convert to ONNX for faster inference

Week 13: Profile and enable batch processing

Week 14: Monitor for concept drift (changing language patterns)

13

Best Practices: The Golden Rules

Data:

1. Always validate inputs (Pydantic)
2. Version your datasets (DVC)

3. Measure label quality (inter-annotator agreement)

Models:

4. Start simple, baseline first

5. Track all experiments (MLflow/W&B)

6. Use cross-validation, not single train/test split

Code:

/. Pin all dependency versions
8. Use type hints and docstrings
9. Write tests before deploying

Production:
10. Monitor everything (metrics, logs, drift) 14

11 Y U A T T L BN R P T o I P N

Career Paths in Al/ML

ML Engineer:

e Focus: Training and deploying models
o Skills: PyTorch, TensorFlow, MLOps tools
* This course: Weeks 6-8, 12-14

MLOps Engineer:
e Focus: Infrastructure and automation

e Skills: Docker, Kubernetes, CI/CD
e This course: Weeks 8, 11, 14

Data Engineer:

* Focus: Data pipelines and infrastructure

o Skills: Data validation, ETL, databases 15

Future Trends in Al Engineering

1. LLM Ops (LLOps)

Managing prompts as code (version control for prompts)

Eval-driven development (RAGAS, TruLens for LLM evaluation)

Vector Database management (Chroma, Pinecone, Weaviate)

Prompt caching and optimization

Emerging tools: LangChain, Llamalndex, DSPy

2. Al Agents

Systems that take action, not just chat

Tool use and function calling (ReAct pattern)

Planning and reasoning (Chain-of-Thought, Tree-of-Thoughts)

Multi-agent systems and collaboration

Emerging tools: LangGraph, AutoGPT, CrewAl

16

Future Trends (Continued)

3. Edge Al & Small Language Models

Running SLMs on phones/laptops (Phi-3, Gemma, Llama 3.2)

ExecuTorch (PyTorch for mobile/edge)

MLX (Apple Silicon optimization)

WebGPU for browser-based inference

Use cases: Offline translation, on-device assistants

4. Multimodal Al

Vision + Language models (GPT-4V, Claude 3, Gemini)

Speech + Vision + Text integration

Video understanding and generation

Tools: CLIP, Whisper, Stable Diffusion

5. Al Safety & Alignment v

Project Ideas: Beginner Level

1. Personal Document Q&A System

Week 1-2: Upload and parse PDFs
Week 6: Use LLM API for RAG (Retrieval Augmented Generation)

Week 9: Build Streamlit interface

Complexity: Low | Impact: High for personal productivity

2. Image Classification Web App

Week 5: Augment limited dataset

Week 7: Fine-tune pre-trained model

Week 9-10: Streamlit demo + FastAPI backend

Complexity: Medium | Impact: Portfolio piece

3. Sentiment Analysis API
18

Project Ideas: Intermediate Level

4. Smart Web Scraper with Active Learning

Week 1: Scrape e-commerce sites

Week 4: Use active learning for price extraction

Week 11: Automate with CI/CD to run daily

Complexity: Medium | Impact: Practical automation

5. Plant Disease Detector (Mobile App)

Week 3-5: Label and augment plant images

Week 7: Train CNN with transfer learning

Week 12: Quantize for mobile deployment

Week 13: Optimize inference speed

Complexity: High | Impact: Agriculture tech

) . 19
6. Code Review Assistant

Project Ideas: Advanced Level

7. Real-time Anomaly Detection System

Week 1-2: Collect and validate streaming data

Week 7: Train autoencoder for anomaly detection

Week 13: Optimize for real-time processing

Week 14: Monitor for drift with Evidently Al

Complexity: Very High | Impact: Production ML system

8. Multi-Model Ensemble API

Week 7: Train multiple models (CNN, Transformer, Gradient Boosting)

Week 8: Package all models in Docker

Week 10: FastAPI with model selection endpoint

Week 14: A/B test models in production

Complexity: Very High | Impact: Advanced MLOps

20

Tools & Technologies Summary

Data Tools:

Collection: requests , BeautifulSoup , Selenium

Validation: Pydantic , pandera

Labeling: Label Studio, Prodigy

Augmentation: albumentations , nlpaug , TextAttack
Model Tools:
e Training: PyTorch, TensorFlow, Hugging Face Transformers

e Optimization: Optuna, Ray Tune

 Tracking: MLflow, Weights & Biases

Deployment Tools:

e Containerization: Docker, Docker Compose 21

Tools & Technologies Summary (2)

Production Tools:

Optimization: ONNX Runtime, TensorRT, OpenVINO

Profiling: PyTorch Profiler, cProfile, line profiler

Monitoring: Evidently Al, Prometheus, Grafana, Sentry

Versioning: Git, DVC

Emerging Tools to Watch:

LangChain/Llamalndex (LLM orchestration)

Weights & Biases (experiment tracking evolution)

Modal, Replicate (serverless ML deployment)

Hugging Face Inference Endpoints

Vertex Al, SageMaker (managed ML platforms)
22

Learning Resources

Courses & Books:

* "Designing Data-Intensive Applications" by Martin Kleppmann
e "Designing Machine Learning Systems" by Chip Huyen

e "Machine Learning Engineering" by Andriy Burkov

» fast.ai (Practical Deep Learning)

e Full Stack Deep Learning (FSDL)

Newsletters:

The Batch (DeepLearning.Al)
Import Al (Jack Clark)

TLDR Al

Ahead of Al

23
Podcasts:

Learning Resources (2)

Conferences:

MLOps focus: MLOps World, apply()

Research: NeurlPS, ICML, ICLR (Datasets & Benchmarks track)

Systems: MLSys, SysML

Industry: Al Summit, Gartner Al Summit

Communities:

r/MachineLearning, r/MLOps (Reddit)

Hugging Face Discord

MLOps Community Slack

Papers with Code

Practice Platforms:
24

What We Didn't Cover (But You Should Learn)

Infrastructure:

 Kubernetes for orchestration
e Terraform for infrastructure as code

e Airflow for workflow orchestration

Advanced ML.:

e Reinforcement Learning
e Federated Learning

o Self-supervised Learning

Specialized Topics:

» Time series forecasting (ARIMA, Prophet, Temporal Fusion Transformers)

e Recommendation systems (collaborative filtering, matrix factorization) 25

LCOAELCENWEVE

1. Data is King

* 80% of ML work is data collection, cleaning, and validation
e Good data > fancy algorithms

e Active learning and augmentation multiply your data value

2. Reproducibility is Non-Negotiable

e Pin versions, use Docker, track experiments

* Future you (and your team) will thank you
3. Start Simple, Iterate
e Baseline - Simple model - Complex model

* Profile before optimizing

e Monitor before scaling 26

The Uncomfortable Truth

Most ML projects fail not because of bad models, but because of bad engineering.

The model is often 5% of the code. The other 95%: data pipelines, validation, APls, deployment, monitoring, error
handling. Models are easy. Systems are hard.

27

What ML Actually Is

What people think: What it actually is:

, , Data Collection (Week 1)

| Model | Data Validation (Week 2)

| * MAGIC x| Data Labeling (Week 3-4)

' ' Data Augmentation (Week 5)
Model (Week 7) <« only here!
Reproducibility (Week 8)
Deployment (Weeks 9-11)
Optimization (Week 12-13)
Monitoring (Week 14)

The ML Development Lifecycle

Stage 1: Exploration

* Understand the problem
e Collect and explore data

e Build baselines

Stage 2: Development

e Train and validate models
e Track experiments

e Optimize hyperparameters

Stage 3: Deployment

» Package model (Docker, ONNX)
e Build API (FastAPI) 29

Final Thoughts

You've learned to:

Build end-to-end ML systems from scratch

Use industry-standard tools and frameworks

Deploy models to production

Monitor and maintain ML systems

What's next?

Build a portfolio project using these skills

Contribute to open-source ML tools

Join the MLOps community

Keep learning - Al moves fast!

Remember:
30

Course Statistics

What we covered:

14 weeks of content

15+ tools and frameworks

3 phases: Data, Models, Production

100+ code examples

Dozens of best practices

What you built:

Web scrapers

Data validation pipelines

ML models (classical + deep learning + LLMSs)

REST APIs

Deployment pipelines 31

Staying Updated

Daily:

* Follow key researchers on Twitter/X
e Browse Hugging Face daily papers

e Check r/MachinelLearning

Weekly:

» Read newsletters (The Batch, Import Al)
* Try new tools released on GitHub

e Participate in community discussions

Monthly:

e Read a paper from ArXiv

e Build a small project with new tech 32

Parting Wisdom

From experienced ML engineers:

"Shipping a model to production teaches you more than any course." - Random ML Engineer

"Always have a baseline. You'd be surprised how often it wins." - Another ML Engineer

"If you can't explain it to a stakeholder, you don't understand it well enough." - Yet Another ML Engineer
"Monitor everything. The model you don't monitor is the one that breaks." - Wise MLOps Engineer

"The best model is the one that's in production." - Pragmatic ML Engineer

33

Thank You!

"The best way to predict the future is to invent it." - Alan Kay
Keep building. Keep learning. Keep shipping.

Questions?

Additional Resources

Course materials:

e All lecture slides on GitHub
e Lab notebooks and solutions

e Example projects and code

Recommended next steps:

1. Build a portfolio project

2. Contribute to open-source ML projects
3. Write blog posts about what you learned
4. Join MLOps communities

5. Keep experimenting with new tools

Stay in touch:

B85

