

Course Summary & Future Trends

Week 15 · CS 203: Software Tools and Techniques for AI

Prof. Nipun Batra

IIT Gandhinagar

The Journey We've Taken

Part 1: The Data Foundation (Weeks 1-5)

- Week 1: Data Collection (Web Scraping, HTTP APIs)
- Week 2: Data Validation (Pydantic, Schema Enforcement)
- Week 3: Data Labeling (Label Studio, Annotation Workflows)
- Week 4: Active Learning (Smart Data Selection)
- Week 5: Data Augmentation (Synthetic Data Generation)

Part 2: Model Engineering (Weeks 6-8)

- Week 6: LLM APIs (OpenAI, Anthropic, Prompt Engineering)
- Week 7: Model Development (Training, Fine-tuning, PEFT/LoRA)
- Week 8: Reproducibility (Docker, MLflow, DVC)

The Journey (Continued)

Part 3: Deployment & MLOps (Weeks 9-14)

- Week 9: Interactive Demos (Streamlit, Gradio)
- Week 10: HTTP APIs (FastAPI, REST Principles)
- Week 11: Git & CI/CD (GitHub Actions, Automated Testing)
- Week 12: Edge Deployment (Quantization, Pruning, ONNX)
- Week 13: Profiling & Optimization (Performance Tuning)
- Week 14: Model Monitoring (Drift Detection, Observability)

The Full Stack AI Engineer

You now have the toolkit to build end-to-end systems:

1. **Scrape** data from the web (requests, BeautifulSoup)
2. **Validate** it rigorously (Pydantic schemas)
3. **Label** efficiently (Label Studio, Active Learning)
4. **Train** a model (PyTorch, fine-tune LLMs with LoRA)
5. **Package** it reproducibly (Docker, requirements.txt)
6. **Serve** it via APIs (FastAPI, async endpoints)
7. **Deploy** with CI/CD (GitHub Actions, automated tests)
8. **Optimize** for production (quantization, profiling)
9. **Monitor** for drift (Evidently AI, Prometheus)

Week-by-Week Key Lessons

Week 1 (Data Collection)

- **Lesson:** Good data beats fancy algorithms
- **Tool:** `requests`, BeautifulSoup, Selenium
- **Pitfall:** Violating robots.txt, missing rate limiting

Week 2 (Data Validation)

- **Lesson:** Validate early, fail fast
- **Tool:** Pydantic for schema enforcement
- **Pitfall:** Trusting external data without validation

Week 3 (Data Labeling)

- **Lesson:** Quality > Quantity for labels
- **Tool:** Label Studio for annotation

Week-by-Week Key Lessons (2)

Week 4 (Active Learning)

- **Lesson:** Let the model tell you what to label next
- **Tool:** Uncertainty sampling, query strategies
- **Pitfall:** Using random sampling when data is expensive

Week 5 (Data Augmentation)

- **Lesson:** Synthetic data can fill gaps in real data
- **Tool:** albumentations, TextAttack, nlpaug
- **Pitfall:** Unrealistic augmentations that hurt generalization

Week 6 (LLM APIs)

- **Lesson:** Start with APIs before self-hosting LLMs
- **Tool:** OpenAI API, Anthropic Claude API

Week-by-Week Key Lessons (3)

Week 7 (Model Development)

- **Lesson:** Start with baselines, iterate systematically
- **Tool:** PyTorch, Optuna for hyperparameter tuning
- **Pitfall:** Jumping to complex models without baselines

Week 8 (Reproducibility)

- **Lesson:** "Works on my machine" is not acceptable
- **Tool:** Docker, MLflow, DVC for versioning
- **Pitfall:** Not pinning dependency versions

Week 9 (Interactive Demos)

- **Lesson:** Demos accelerate feedback loops
- **Tool:** Streamlit for dashboards, Gradio for quick UIs

Week-by-Week Key Lessons (4)

Week 10 (HTTP APIs)

- **Lesson:** REST APIs are the universal interface
- **Tool:** FastAPI with automatic OpenAPI docs
- **Pitfall:** Missing input validation and error handling

Week 11 (Git & CI/CD)

- **Lesson:** Automate everything that can be automated
- **Tool:** GitHub Actions for CI/CD pipelines
- **Pitfall:** Not testing before deploying

Week 12 (Edge Deployment)

- **Lesson:** Optimization is required for resource-constrained devices
- **Tool:** ONNX Runtime, quantization, pruning

Week-by-Week Key Lessons (5)

Week 13 (Profiling & Optimization)

- **Lesson:** Measure first, optimize second
- **Tool:** PyTorch Profiler, cProfile, line_profiler
- **Pitfall:** Premature optimization

Week 14 (Model Monitoring)

- **Lesson:** Models degrade over time in production
- **Tool:** Evidently AI, Prometheus, Grafana
- **Pitfall:** No alerts for drift or performance degradation

Common Pitfalls Across the Course

Data Issues:

- Not validating data schemas early
- Collecting biased or unrepresentative data
- Ignoring class imbalance

Model Issues:

- No baseline comparison
- Overfitting on small datasets
- Not using cross-validation

Engineering Issues:

- Hardcoding configurations
- Not using version control for data

Integration: How Weeks Connect

Data Pipeline (Weeks 1-5):

Raw Web Data → Validation → Labeling → Active Learning → Augmentation → Clean Dataset

Model Pipeline (Weeks 6-8):

Clean Dataset → LLM API / Training → Experiment Tracking → Reproducible Model

Deployment Pipeline (Weeks 9-14):

Model → Demo (Streamlit) → API (FastAPI) → CI/CD → Optimization → Monitoring

Key Insight: Each week builds on previous weeks. You need ALL pieces for production ML.

Real-World Case Study: Image Classification Service

Scenario: Build a production image classifier for plant disease detection.

Week 1-2: Scrape plant images, validate image formats/sizes

Week 3-4: Label diseases, use active learning for rare classes

Week 5: Augment with rotations, crops (realistic transformations)

Week 7: Fine-tune ResNet-50 with transfer learning

Week 8: Package in Docker, track experiments with MLflow

Week 9: Build Streamlit demo for farmers

Week 10: Create FastAPI endpoint for mobile app

Week 11: Set up CI/CD to auto-test on new data

Week 12: Quantize model to INT8 for mobile deployment

Week 13: Profile and optimize inference latency

Week 14: Monitor for drift as seasons change

Real-World Case Study: Text Classification API

Scenario: Build sentiment analysis API for customer reviews.

Week 1-2: Scrape reviews, validate JSON schemas

Week 3-4: Label sentiment, use uncertainty sampling

Week 5: Augment with back-translation, synonym replacement

Week 6: Start with OpenAI API for prototyping

Week 7: Fine-tune DistilBERT with LoRA for cost savings

Week 8: Containerize with Docker, track with W&B

Week 9: Build Gradio demo for stakeholders

Week 10: Deploy FastAPI with rate limiting

Week 11: Automate testing and deployment

Week 12: Convert to ONNX for faster inference

Week 13: Profile and enable batch processing

Week 14: Monitor for concept drift (changing language patterns)

Best Practices: The Golden Rules

Data:

1. Always validate inputs (Pydantic)
2. Version your datasets (DVC)
3. Measure label quality (inter-annotator agreement)

Models:

4. Start simple, baseline first
5. Track all experiments (MLflow/W&B)
6. Use cross-validation, not single train/test split

Code:

7. Pin all dependency versions
8. Use type hints and docstrings
9. Write tests before deploying

Production:

10. Monitor everything (metrics, logs, drift)
11. Automate testing and deployment (CI/CD)

Career Paths in AI/ML

ML Engineer:

- Focus: Training and deploying models
- Skills: PyTorch, TensorFlow, MLOps tools
- This course: Weeks 6-8, 12-14

MLOps Engineer:

- Focus: Infrastructure and automation
- Skills: Docker, Kubernetes, CI/CD
- This course: Weeks 8, 11, 14

Data Engineer:

- Focus: Data pipelines and infrastructure
- Skills: Data validation, ETL, databases

Future Trends in AI Engineering

1. LLM Ops (LLOps)

- Managing prompts as code (version control for prompts)
- Eval-driven development (RAGAS, TruLens for LLM evaluation)
- Vector Database management (Chroma, Pinecone, Weaviate)
- Prompt caching and optimization
- **Emerging tools:** LangChain, LlamaIndex, DSPy

2. AI Agents

- Systems that take action, not just chat
- Tool use and function calling (ReAct pattern)
- Planning and reasoning (Chain-of-Thought, Tree-of-Thoughts)
- Multi-agent systems and collaboration
- **Emerging tools:** LangGraph, AutoGPT, CrewAI

Future Trends (Continued)

3. Edge AI & Small Language Models

- Running SLMs on phones/laptops (Phi-3, Gemma, Llama 3.2)
- ExecuTorch (PyTorch for mobile/edge)
- MLX (Apple Silicon optimization)
- WebGPU for browser-based inference
- **Use cases:** Offline translation, on-device assistants

4. Multimodal AI

- Vision + Language models (GPT-4V, Claude 3, Gemini)
- Speech + Vision + Text integration
- Video understanding and generation
- **Tools:** CLIP, Whisper, Stable Diffusion

5. AI Safety & Alignment

Project Ideas: Beginner Level

1. Personal Document Q&A System

- Week 1-2: Upload and parse PDFs
- Week 6: Use LLM API for RAG (Retrieval Augmented Generation)
- Week 9: Build Streamlit interface
- **Complexity:** Low | **Impact:** High for personal productivity

2. Image Classification Web App

- Week 5: Augment limited dataset
- Week 7: Fine-tune pre-trained model
- Week 9-10: Streamlit demo + FastAPI backend
- **Complexity:** Medium | **Impact:** Portfolio piece

3. Sentiment Analysis API

Project Ideas: Intermediate Level

4. Smart Web Scraper with Active Learning

- Week 1: Scrape e-commerce sites
- Week 4: Use active learning for price extraction
- Week 11: Automate with CI/CD to run daily
- **Complexity:** Medium | **Impact:** Practical automation

5. Plant Disease Detector (Mobile App)

- Week 3-5: Label and augment plant images
- Week 7: Train CNN with transfer learning
- Week 12: Quantize for mobile deployment
- Week 13: Optimize inference speed
- **Complexity:** High | **Impact:** Agriculture tech

6. Code Review Assistant

Project Ideas: Advanced Level

7. Real-time Anomaly Detection System

- Week 1-2: Collect and validate streaming data
- Week 7: Train autoencoder for anomaly detection
- Week 13: Optimize for real-time processing
- Week 14: Monitor for drift with Evidently AI
- **Complexity:** Very High | **Impact:** Production ML system

8. Multi-Model Ensemble API

- Week 7: Train multiple models (CNN, Transformer, Gradient Boosting)
- Week 8: Package all models in Docker
- Week 10: FastAPI with model selection endpoint
- Week 14: A/B test models in production
- **Complexity:** Very High | **Impact:** Advanced MLOps

Tools & Technologies Summary

Data Tools:

- Collection: `requests`, `BeautifulSoup`, `Selenium`
- Validation: `Pydantic`, `pandera`
- Labeling: Label Studio, Prodigy
- Augmentation: `albumentations`, `nlpaug`, `TextAttack`

Model Tools:

- Training: PyTorch, TensorFlow, Hugging Face Transformers
- Optimization: Optuna, Ray Tune
- Tracking: MLflow, Weights & Biases

Deployment Tools:

- Containerization: Docker, Docker Compose

Tools & Technologies Summary (2)

Production Tools:

- Optimization: ONNX Runtime, TensorRT, OpenVINO
- Profiling: PyTorch Profiler, `cProfile`, `line_profiler`
- Monitoring: Evidently AI, Prometheus, Grafana, Sentry
- Versioning: Git, DVC

Emerging Tools to Watch:

- LangChain/LlamaIndex (LLM orchestration)
- Weights & Biases (experiment tracking evolution)
- Modal, Replicate (serverless ML deployment)
- Hugging Face Inference Endpoints
- Vertex AI, SageMaker (managed ML platforms)

Learning Resources

Courses & Books:

- "Designing Data-Intensive Applications" by Martin Kleppmann
- "Designing Machine Learning Systems" by Chip Huyen
- "Machine Learning Engineering" by Andriy Burkov
- fast.ai (Practical Deep Learning)
- Full Stack Deep Learning (FSDL)

Newsletters:

- The Batch (DeepLearning.AI)
- Import AI (Jack Clark)
- TLDR AI
- Ahead of AI

Podcasts:

Learning Resources (2)

Conferences:

- **MLOps focus:** MLOps World, apply()
- **Research:** NeurIPS, ICML, ICLR (Datasets & Benchmarks track)
- **Systems:** MLSys, SysML
- **Industry:** AI Summit, Gartner AI Summit

Communities:

- r/MachineLearning, r/MLOps (Reddit)
- Hugging Face Discord
- MLOps Community Slack
- Papers with Code

Practice Platforms:

What We Didn't Cover (But You Should Learn)

Infrastructure:

- Kubernetes for orchestration
- Terraform for infrastructure as code
- Airflow for workflow orchestration

Advanced ML:

- Reinforcement Learning
- Federated Learning
- Self-supervised Learning

Specialized Topics:

- Time series forecasting (ARIMA, Prophet, Temporal Fusion Transformers)
- Recommendation systems (collaborative filtering, matrix factorization)

Key Takeaways

1. Data is King

- 80% of ML work is data collection, cleaning, and validation
- Good data > fancy algorithms
- Active learning and augmentation multiply your data value

2. Reproducibility is Non-Negotiable

- Pin versions, use Docker, track experiments
- Future you (and your team) will thank you

3. Start Simple, Iterate

- Baseline → Simple model → Complex model
- Profile before optimizing
- Monitor before scaling

The Uncomfortable Truth

Most ML projects fail not because of bad models, but because of bad engineering.

The model is often 5% of the code. The other 95%: data pipelines, validation, APIs, deployment, monitoring, error handling. **Models are easy. Systems are hard.**

What ML Actually Is

What people think:

What it actually is:

Data Collection (Week 1)
Data Validation (Week 2)
Data Labeling (Week 3-4)
Data Augmentation (Week 5)
Model (Week 7) ← only here!
Reproducibility (Week 8)
Deployment (Weeks 9-11)
Optimization (Week 12-13)
Monitoring (Week 14)

The ML Development Lifecycle

Stage 1: Exploration

- Understand the problem
- Collect and explore data
- Build baselines

Stage 2: Development

- Train and validate models
- Track experiments
- Optimize hyperparameters

Stage 3: Deployment

- Package model (Docker, ONNX)
- Build API (FastAPI)

Final Thoughts

You've learned to:

- Build end-to-end ML systems from scratch
- Use industry-standard tools and frameworks
- Deploy models to production
- Monitor and maintain ML systems

What's next?

- Build a portfolio project using these skills
- Contribute to open-source ML tools
- Join the MLOps community
- Keep learning - AI moves fast!

Remember:

Course Statistics

What we covered:

- 14 weeks of content
- 15+ tools and frameworks
- 3 phases: Data, Models, Production
- 100+ code examples
- Dozens of best practices

What you built:

- Web scrapers
- Data validation pipelines
- ML models (classical + deep learning + LLMs)
- REST APIs
- Deployment pipelines

Staying Updated

Daily:

- Follow key researchers on Twitter/X
- Browse Hugging Face daily papers
- Check r/MachineLearning

Weekly:

- Read newsletters (The Batch, Import AI)
- Try new tools released on GitHub
- Participate in community discussions

Monthly:

- Read a paper from ArXiv
- Build a small project with new tech

Parting Wisdom

From experienced ML engineers:

"Shipping a model to production teaches you more than any course." - Random ML Engineer

"Always have a baseline. You'd be surprised how often it wins." - Another ML Engineer

"If you can't explain it to a stakeholder, you don't understand it well enough." - Yet Another ML Engineer

"Monitor everything. The model you don't monitor is the one that breaks." - Wise MLOps Engineer

"The best model is the one that's in production." - Pragmatic ML Engineer

Thank You!

"The best way to predict the future is to invent it." - Alan Kay

Keep building. Keep learning. Keep shipping.

Questions?

Additional Resources

Course materials:

- All lecture slides on GitHub
- Lab notebooks and solutions
- Example projects and code

Recommended next steps:

1. Build a portfolio project
2. Contribute to open-source ML projects
3. Write blog posts about what you learned
4. Join MLOps communities
5. Keep experimenting with new tools

Stay in touch: