from sympy import *
init_printing(use_unicode=True)n, k = symbols("n k")expr = Limit((1 + k/n)**n, n, oo)expr\(\displaystyle \lim_{n \to \infty} \left(\frac{k}{n} + 1\right)^{n}\)
expr.doit()\(\displaystyle e^{k}\)
x, mu, sigma = symbols("x \mu \sigma")norm = exp(-(x-mu)**2/(2*sigma**2))norm\(\displaystyle e^{- \frac{\left(- \mu + x\right)^{2}}{2 \sigma^{2}}}\)
expr = integrate(norm, x)norm\(\displaystyle e^{- \frac{\left(- \mu + x\right)^{2}}{2 \sigma^{2}}}\)
simplify(expr)\(\displaystyle - \frac{\sqrt{2} \sqrt{\pi} \sigma \operatorname{erf}{\left(\frac{\sqrt{2} \left(\mu - x\right)}{2 \sigma} \right)}}{2}\)