from sympy import *
=True) init_printing(use_unicode
= symbols("n k") n, k
= Limit((1 + k/n)**n, n, oo) expr
expr
\(\displaystyle \lim_{n \to \infty} \left(\frac{k}{n} + 1\right)^{n}\)
expr.doit()
\(\displaystyle e^{k}\)
= symbols("x \mu \sigma") x, mu, sigma
= exp(-(x-mu)**2/(2*sigma**2)) norm
norm
\(\displaystyle e^{- \frac{\left(- \mu + x\right)^{2}}{2 \sigma^{2}}}\)
= integrate(norm, x) expr
norm
\(\displaystyle e^{- \frac{\left(- \mu + x\right)^{2}}{2 \sigma^{2}}}\)
simplify(expr)
\(\displaystyle - \frac{\sqrt{2} \sqrt{\pi} \sigma \operatorname{erf}{\left(\frac{\sqrt{2} \left(\mu - x\right)}{2 \sigma} \right)}}{2}\)