Lecture # Date Topic (slides linked) Homework Reading
         
1 4 Jan Introduction, Logistics    
2 8 Jan Accuracy metrics, classification, regression    
    Decision Trees (Discrete Input, Discrete Output) HW1 Tom Mitchell Chap 3
3 9 Jan Decision Trees 2    
    Decision Trees 3    
    Bias-Variance and Cross-Validation    
4 11 Jan Ensemble learning - bagging, boosting and Random Forest    
  11 Jan Research Methods (See RM101 here)    
  15 Jan Quiz 1 (solved)    
5 15 Jan Linear Regression 1   An Introduction to Statistical Learning with Applications in R Chapter 3
  15 Jan Maths for ML 1    
  17 Jan HW 2 due on 27th Jan HW2  
6 18 Jan Paper presentations I    
  20 Jan Project proposal due    
7 22 Jan Linear Regression 2 (slides in 15th Jan lecture)    
8 25 Jan Maths for ML 2 (Contour, Gradients, Lagrangian)   Contrained Optimisation from Khan Academy
    Feature Selection    
    Linear Regression 3 - Gradient Descent    
  27 Jan HW 3 due on 5th Feb HW3  
9 29 Jan Paper presentations II    
10 1 Feb SGD and GD worked out example    
  1 Feb Notebook motivating regularisation   An overview of GD algorithm
11 5 Feb Paper presentations III    
12 8 Feb SGD v.s GD Summary    
  8 Feb Notebook showing Contour for GD and SGD    
  8 Feb Shuffling    
  8 Feb KKT conditions   KKT conditions
  8 Feb Convexity    
  8 Feb Ridge Regression    
13 12 Feb Subgradient    
  12 Feb Lasso    
  12 Feb Coordinate Descent    
  12 Feb Coordinate Descent for Regularised and Unregularised Regression    
14 15 Feb Phase - I presentations    
15 18 Feb KNN    
  18 Feb Parametric v/s Non-Parametric methods   2.1.2 in ISLR book
16 12 Mar Why KNN is non-parametric    
  12 Mar Curse of dimensionality    
  12 Mar Naive Bayes   https://www.coursera.org/learn/bayesian-methods-in-machine-learning
17 19 Mar ML categorisation    
  19 Mar Active Learning notebook    
  19 Mar Active learning   Survey on Active learning
  20 Mar Phase - II presentations    
18 22 Mar MLE, MAP, Bayesian -1    
19 26 Mar MLE, MAP, Bayesian -2   Multivariate Gaussian
  26 Mar Bayesian Linear regression notebook    
  26 Mar SVM 1   SVM without tears
20 29 Mar SVM 2   SVM tutorial
    ML demo presentations    
21 2 Apr SVM 3    
22 5 Apr Demos    
23 9 Apr SVM 4    
23 9 Apr Logistic Regression    
24 12 Apr SVM dual primal relationship    
24 12 Apr Neural Networks 1    
25 16 Apr Quiz 3 (solved)    
25 16 Apr Neural Networks - II (slides same as above)    
26 23 Apr Dropout notebook    
26 23 Apr Unsupervised Learning    
  2 May End semester exam Answers