Lecture # Date Topic Reading
1 7 Jan Introduction [Slides][Video]  
2 8 Jan Convention, Metrics, Classification, Regression [Slides][Video]  
3 15 Jan Decision Tree 1 [Slides][Video]  
4 16 Jan Decision Tree 2 [Slides][Video]  
5 22 Jan Ensemble Learning [Slides][Video]  
6 24 Jan Maths ML [Slides] Linear Regression [Slides][Video]  
7 29 Jan Geometric Interpretation of Least Squares [Slides] Contour plot [Slides][Video]  
8 31 Jan Linear Regression II [Slides] Convexity [Slides] [Video]  
9 5 Feb Gradient Descent [Slides] [Video]  
10 6 Feb Linear Regression (Time Complexity) [Slides] [Video]  
11 12 Feb Constrained Optimisation [Slides] [Video]  
12 13 Feb Ridge Regression [Slides] [Video]  
13 19 Feb Lasso Regression I [Slides] [Video]  
14 20 Feb Lasso Regression II [Video]  
15 26 Feb Bayesian Learning [Slides] [Video]  
16 27 Feb Bayesian Linear Regression [Slides] [Video]  
17 19 Mar Logistic Regression I [Slides] [Video]  
18 20 Mar Logistic Regression II [Video]  
19 27 Mar Bayesian ML (guest lecture by Zeel Patel) [Video]  
20 2 Apr MLP1 [Slides] [Video]  
21 3 Apr MLP2 [Video]  
22 9 Apr NN: Computation Graph [Video]  
23 10 Apr NN: Backpropagation [Slides] [Video]  
24 16 Apr CNN [Slides] [Video]  
25 17 Apr Naive Bayes [Slides] [Video]  
26 23 Apr KNN [Slides] [Video]  
27 24 Apr SVM [Slides] [Video]  
28 25 Apr SVM kernel and soft margin [Slides 1] [Slides 2] [Video]