Summary
- Instructor: Nipun Batra (nipun.batra@iitgn.ac.in)
- Teaching Assistants: Zeel B Patel, Sarth Dubey, Madhav Kanda, Haikoo Khandor
- Course Timings: Monday 330-450 PM IST and Thursday 2-3:20 PM IST
- Slack Invite corrected!
Main topics
- Bayesian Inference
- Estimation: Maximum Likelihood, Maximum a Posteriori, Full Bayesian
- Sampling: Rejection Sampling, Monte Carlo, Specific Sampling Techniques (like Box Muller)
- Approximate Inference: Variational Inference, Markov Chain Monte Carlo, Laplace Approximation
- Models: Bayesian Linear, Logistic regression; Bayesian Neural Networks; Gaussian Processes; Probabilistic PCA
- Applications: Bayesian Optimization, Active learning